نشریه تحلیل فضایی مخاطرات محیطی، سال اول، شماره پایاپی 3، پاییز 1392
صفحات 70-95

تحليل فضایی مخاطره توفان‌های تندبیل بحری ایران

پویس قوی‌دل رحیمی، استادیار جغرافیای طبیعی، دانشگاه تربیت مدرس
پرستو بهایانی، دانشجوی کارشناسی ارشد مخاطرات آب و هوا، دانشگاه تربیت مدرس
منوچهر فرهزاده اصل، دانشیار اقلیم‌شناسی، دانشگاه تربیت مدرس

دریافت مقاله: 20/2/1392
پذیرش نهایی: 25/5/1392

چکیده
در پژوهش حاضر، داده‌های ماه‌های فروردین و وقوع توفان‌های تندبیل 25 ایستگاه سیستم‌پیکی کشور در طی بیان‌های زمانی 51 سال از 1360-1970 با استفاده از روش‌های تحلیل خوشه‌ای سلسله‌مراتبی و افزایش ثبات و روش زمانی آمار کربنگی به منظور طبقه‌بندی و شناسایی مکان‌های اصلی و خودکاری توفان‌های تندبیل فصل پروردگار در ایران تحلیل شد. از محاسبه فراوانی وقوع توفان‌های تندبیل قبل بررسی و بررسی آماری مربوط به آن، نتایج توزیع‌های تصادفی مناسب با داده‌های توفان‌های تندبیل بحری داده شد و سپس با استفاده از تحلیل خوشه‌ای به تکنیک‌های منطقی گوتاکوی به گروه‌های همخوان و با استفاده از روش کربنگی به یپنه‌های تغریب این کاربرد گزیند. پس از بررسی فراوانی‌های آمار توصیفی توفان‌های تندبیل بحری ایران، مانند پیشروی مفهومی تصادفی که توزیع احتمال وسیع‌سیاپارامتر نیست. براساس نتایج حاصل از تحلیل خوشه‌ای منطقی گوتاکوی کشور به نماینده همکار مجزا مشتمل بر نواحی شمالی، میانی، شمال شرقی؛ نواحی مرکزی و شرقی؛ شمال غرب؛ غرب و جنوبی جنوبی با روند مشابه خوشه‌هایی گردید. پس از انجام یپنه‌های مشخص شد که کانون‌های اصلی خودکار این پدیده بیشتر در نواحی شمال غرب و غرب کشور متراکم شده است.

واژگان کلیدی: مخاطرات اقلیمی، یپنه‌های، توفان تندبیل، تحلیل فضایی، ایران.

Email: ghavide @modares.ac.ir

1- نویسنده مسئول:
مقدمه
توافن تندیزی از انواع بازترین اشکال نابایداری جوی است. رخداد آن در افراد کوویوجویا یک علت سبیل، باران زیر بادی همراه با دانه‌های ریز تگزگ یا برف همراه است. توافن‌های تندیزی، به منظور جزئی لایه‌ای از اقلیم، از شدت‌ترین مخاطرات اقلیمی محوری مشترک و نظری مهم تحقیق آمیز و کریستالسازی می‌شوند. توافنهای تندیزی و پیش‌سوزی ناشی از ان همچون تگزگ، بای شدت، صاف‌های بارش سبک و سیل‌سی از ارتباطات اقلیمی شناختی
هستند که باعث ریزی از تحقیقات آب و هوا توانسته جهان آن یا به خود اختصاص دادهند. انسان مسئولیت و تحقیقاتی را موثر کرده است که در در بررسی توافن‌های تندیزی با تصویر باندهای ماهواره‌ای، و فناوری‌های ناشی از توافن‌های تندیزی نسبت به ویژگی‌های متفاوت سنجش‌های ماهواره‌ای لندس، صداهای ناشی را توافن‌ها نقض
کرده است (2012) Bently et al.


در تحقیقی از توافن‌های تندیزی به عنوان مهم‌ترین در افراد کوویوجویا، سیستم‌پایا بادی زیر بادی و قطعات محدودی از توافن‌های تندیزی از ارتباطات اقلیمی شناختی و شدت‌های در حدود ۸۰ درصد موارد در روزهای رعد و برقی در نیمه دوم سال باران حضور دارد. در ۶۱ درصد روزهای رعد و برقی باران بین ۱/۱۰ تا ۱/۳ میلی‌متر است. موارد بیش از سه میلی‌متر نیز به صورت نادر و عمدتاً در نواحی کوه‌های مرتفع و مراکز کوویوجویا وجود دارد. (Lupikasza, 2008) غربی آلمان از داده‌های روزهای تندیزی، داده‌های مربوط به بیش از ۱/۳ از یک کشور برمی‌خواهد. جریان‌های بزرگ میزان و شاخص‌های همبستگی برای دوره‌های ۱۹۷۲-۲۰۰۰ استفاده شده و مشخص شد که به‌بی‌بی‌بی شاخص‌های همبستگی به کار برده و

۶۰
بدون تغییر باقی مانده است. همچنین، روزهای تغییرکننده به طور عضوی‌دایی افرازی نشان داده‌اند (Kunz et al, 2009). مطالعه تغییرات فعالیت و فرکانس رخداد توفان‌های آه در واسطه نشان داد که زمان شروع توفان‌ندری از 17 آوریل تا 28 ماه می‌است. همچنین، از هشته آغاز تا بهار معنی نیز وقوع آن ماه‌ها این ماه است. در کل، در غرب منطقه، قابل توجهی کمتری از شرق نتایج بررسی‌های انجام شد. می‌توان از یک میکروبی‌热点 ساخت که روزهای مهی و طبقه‌نشین صاقعیه‌ای (Kunz et al, 2009) در حالی که آسیا تأثیر عضوی‌دایی نشان داد. این مطالعه تغییراتی که در سراسر این فراکس ناشی از است. (Allan and karoly, 2013). تغییرات فضا و زمان صاقعیه‌ای این بر سری‌های روزی از طی دوره‌های 1995 تا 2010 معین می‌کند که فعالیت‌های فضایی و زمانی صاقعیه‌ای بر روی کوه‌های مرکزی آمریکا و همچنین بر روی قسمت‌های غربی کوهستان‌های آیلابیان است و بیشترین نتایج و تکرار از روزهای بهتر و وجود صاقعیه در روزهای تابستان اتفاق می‌افتد (2012)؛ تجزیه و تحلیل اولیه ارائه شد و در بررسی‌های تغییرات، و فضایی صاقعیه‌های بین‌شهری 2008 تا 2019 مشخص می‌شود که از نظر زمانی در طی فصل پاییز و بعد از آن، فصل صافی‌تر و بار ور و از نظر مکانی در دریای پاپ و آگیان صاقعیه در بالاترین حضور است. (Nastos et al, 2014). بررسی‌های شناختی توفان‌های تندروی برای ارتقاء و ارتقاء انسان بوده و همچنین، تایپ بررسی‌های گیرنده‌ای از درون مشخص کرد که تاوالی‌های برای افرازی فعالیت توان تندروی در مناطق جنوبی (فقط در پاری و تابستان)، جنوب شرقی، شمال شرقی و شمال غرب (فقط در پاییز و تابستان) مشهد است (2015).

در ایران، ناکامی در زمینه‌های تحصیل مکانی توفان‌های تندروی ایران به‌وجود گرفتن و مطالعات برداره‌ای بررسی‌های آماری، هم‌درجه و دینامیکی است. این اطلاعات در مورد توفان‌های تندروی ایران در کتاب آموزش و دانشجویی می‌باشد. (1378) در یکی از اولین مطالعه‌های صنعت گرفتن در ایران بسیار بالا و قابل استفاده‌است. حجاجی زاده (1379) برای بررسی توان‌ها و رشد و برق در غرب کشور با توجه به شرایط سیستمیک حاکم بر منطقه در ماه‌هنگام از دوره‌های گرم و ماه‌های زیان به فارس و عبور از دوره سرد سال در صورت نمک در سیاحت و عوامل اجتماعی مهم گردش عمومی جوی، به‌عنوان پرداخت جنب‌های و چرخ‌گیری مثبت تراز 500 هکتاراکسکال، با اولویت مطالعه قرار داد و نتایج به دست آمده را با پرندگان ایستگاه شمال غرب و غرب جنوب در نظر افزایش خود به این نتیجه رسید که با آبی‌پوش گرم در صورت سال افرازی بارندگی با عواملش‌ترین پرداخت جم‌بندی‌های سازمانی، این عوامل جامعه‌ای رایگان و مثبت و پیش‌بینی‌ها و طبقه‌نی‌های توفان‌های تندروی منطقه جنوب و جنوب غرب ایران در نگاهی جالی را در پویش به مطالعه توفان‌های تندروی نمایش گذاشته با این نتیجه آنها واقعیت را نشان می‌ده که اغلب بارش‌های مذکور در فصل بهار و تابستان و طی ساعات بعد از ظهر و اولی شرب می‌ده. خورشید درست و قوی‌ترین رحیمی (1385) در تحقیق خود به این نتیجه رسیده که بیشترین میزان وقوع توفان‌های تندروی در شمال غرب ایران در ماه اردیبهشت رخ می‌ده. خوشنعل دستجردی و قویدان رحیمی (1386) در پژوهشی با استفاده از درآمدهای پیش‌بینی و قوانین توان‌های تندروی تبریز دریافت که بیشترین اختلاف توفان‌های تندروی در منطقه بین فصل بهار و خواجه می‌افتد. قویدان رحیمی (1930) با استفاده از شاخص‌های بایانی به تحلیل دینامیکی توفان‌های تندروی روز از نشان داده‌اند که در میان شاخص‌ها شاخص شوئارت نتایج بهتری را برای ازبینی و بیشتری بینی‌توان تندروی دارد. میر احمدی (1391) با استفاده از اطلاعات مربوط به وقوع توفان‌های تندروی کوه‌ریز در طول دوره ماه‌های 2012 تا 2013 به بیشتر و پیش‌بینی‌های مزمنی نشان داد که بیشترین وقوع توفان‌های تندروی در استان‌های
سیونوپیک کوه‌های فلسطین در فصل بهار و ماه آوریل رخ می‌دهد. مدل‌های روند خشک و پلی‌نومیال مربوط به نشان دادن که وقوع توفان‌های ندی در ایستگاه مربوط روستا کاهشی دارد.

فصل بهار از جمله فصول انتقالی سال با شرایط بسیار ناپیمان اقلیمی است که هر ساله در این مقطع زمینی به دلیل رخداد حداکثر فراوانی تولید ندی در صدای آب و پدیده‌های دیده‌بان گرد. در کل، مخاطره‌های تولید ندی و پدیده‌های همراه آن مخاطره‌های دیگری همراه با خسارات فراوان است. با توجه به اینکه جوانه‌های زمینی که شروع فرصت برای قراردادی و مقابله با آن وجود دارد و دست‌پایی به روش‌های مقابله با این پدیده‌های خسارت‌آور در گرو مطالعات و شناخت کاوی‌های رخداد و بارش‌های زمینی، عواملی به وجود اورتندی آن و شرایط ناپایدار و تأثیر آنها در مقیاس‌های زمینی و مکانی معنی است، بنابراین این مطالعه با هدف زنجیره تحلیل تولید ندی بهار و شناسایی مکان‌های اصلی رخداد این مخاطره این مخاطره در سطح کشور صورت گرفته است.

داده‌ها و روش‌ها

کشور ایران با وسعت 1480915 کیلومتر مربع مابین ۲۵ تا ۴۴ درجه طول شرقی در نیمه جنوبی منطقهٔ معتدله نیم‌کره شمای قرار دارد و یک جنوبی آن در منجارت منطقه‌ای استوایی واقع شده و منتظر از راه‌های این منطقه است. حضور سیونوپیک‌های سیونوپیکی مهار زیرزمینی، که در استان‌های غربی به سمت ایران روانه می‌گردد، به همراه منابع رطوبتی شمال و جنوب کشور و نیروگرانی پیچیده و ارتفاعات کوه‌نشینی، علاوه بر تغییرات تابع آب و هوا، این مناطق خاصی را همچون تولید ندی در این منطقه به وجود می‌آورند. به همین منظور شناسایی مکان‌های اصلی رخداد این مخاطره در گستره نکته‌ای ضرورت می‌یابد.

در عرب‌های حاضر، از داده‌های فراوانی ماهانه تولید ندی ۲۵ ایستگاه سیونوپیک کشور به مدت ۵۱ سال در بارندی آماری ایستگاه‌های مطالعه در صفحه ای ایستگاه‌های مطالعه در بارندی ایران.
برای پرورش‌های فعالی، فراوانی توافن‌های نتیجه‌زا در ماه‌های مختلف با توجه به مرزهای میانه‌ای مربوط به درجه حرارت گرم‌شده تا میانه‌ای مربوط به درجه حرارت حساسیت آبی‌سیاهی. این نتایج با افزایش سطح دمای حرارتی و تغییرات فوری سیستم‌های بادی و هوا در تناوب‌های مختلف افزایش می‌یابد. 

در علوم، این نتایج با توجه به اینکه درجه حرارت مرزهای نتیجه‌زار میانه‌ای مربوط به درجه حرارت حساسیت آبی‌سیاهی می‌باشد، این نتایج با توجه به اینکه درجه حرارت مرزهای نتیجه‌زار میانه‌ای مربوط به درجه حرارت حساسیت آبی‌سیاهی می‌باشد، این نتایج با توجه به اینکه درجه حرارت مرزهای نتیجه‌زار میانه‌ای مربوط به درجه حرارت حساسیت آبی‌سیاهی می‌باشد، این نتایج با توجه به اینکه درجه حرارت مرزهای نتیجه‌زار میانه‌ای مربوط به درجه حرارت حساسیت آبی‌سیاهی می‌باشد، این نتایج با توجه به اینکه درجه حرارت مرزهای نتیجه‌زار میانه‌ای مربوط به درجه حرارت حساسیت آبی‌سیاهی می‌باشد، این نتایج با توجه به اینکه درجه حرارت مرزهای نتیجه‌زار میانه‌ای مربوط به درجه حرارت حساسیت آبی‌سیاهی می‌باشد، این نتایج با توجه به اینکه درجه حرارت مرزهای نتیجه‌زار میانه‌ای مربوط به درجه حرارت حساسیت آبی‌سیاهی می‌باشد، این نتایج با توجه به اینکه درجه حرارت مرزهای نتیجه‌زار میانه‌ای مربوط به درجه حرارت حساسیت آبی‌سیاهی می‌باشد، این نتایج با توجه به اینکه درجه حرارت مرزهای نتیجه‌زار میانه‌ای مربوط به درجه حرارت حساسیت آبی‌سیاهی می‌باشد.
شمالی کشور در بابلز و بندعرایس رخ داده است. دامنه احراز معمل توافن تندیز بهار 2 تا 8 است. این مقدار از شمال غرب به طرف بخش‌های جنوبی کاهش می‌یابد. بیشتر احراز عبور در زنجان، تبریز و ارومیه و مقدار کمتر آن در بندعرایس، بابلز و اصفهان است. بیشترین ضریب تغییر ذری توافن تندیز فصل بهار با 132 در گرگان در جنوب شرقی دریا خزر و کمترین مقدار این ضریب در تبریز برای با 28 درصد در شمال غرب ایران محاسبه شده است. با توجه به این که فصل بهار فرآوران زمان برای وقوع توافن تندیز است و بخش‌هایی این مقدار در شمال غرب به دلیل فرآم بودن شرایط قابلیمی در این بخش است، بالاترین میزان توافن تندیز در تبریز با 1023 رخداد مشاهده شده است. پس از تبریز، ارومیه با 749 و زنجان و مهرآباد با بیش از 600 رخداد توافن تندیز در رده‌های ابدی قرار دارند. در این شرایط، در بخش‌های جنوبی کشور، همچون بندعرایس با 81 رخداد تندیز، کمترین میزان ملاحظه می‌گردد. از نظر کمترین مقدار فراوانی وقوع توافن تندیز، تبریز با 6 رخداد بیشترین مقدار را از آن خود کرده است. به غیر از این‌گونه های غرب و شمال غرب کشور با 1 تا 4 رخداد توافن تندیز در سایر مناطق کشور هنگفت ناگفته نشده است. از لحاظ بیشترین فراوانی رخداد توافن تندیز، تبریز ارومیه و زنجان در بخش شمال غربی بالاترین مقدار را دارند که بیماری بیش از 30 توافن را دری به می‌گیرد. در جنوب وضعیت بابلز با 7 توافن در کمترین حد خود قرار دارد.

جدول 1. فراست‌‌های امیر توافنی فراوانی وقوع توافن‌های تندیز ایران در فصل بهار طی 1960-2010

<table>
<thead>
<tr>
<th>رنگ</th>
<th>نام استان</th>
<th>دنمارک</th>
<th>حکافی</th>
<th>صحافی</th>
<th>معجزه</th>
<th>صیه‌کن</th>
<th>نام اسپانیا</th>
<th>نام اسپانیا</th>
<th>دنمارک</th>
<th>حکافی</th>
<th>صحافی</th>
<th>معجزه</th>
<th>صیه‌کن</th>
</tr>
</thead>
<tbody>
<tr>
<td>تبریز</td>
<td>ارومیه</td>
<td>زنجان</td>
<td>قزوین</td>
<td>همدان</td>
<td>کرمان</td>
<td>کرمانشاه</td>
<td>اصفهان</td>
<td>کرمان</td>
<td>اصفهان</td>
<td>قزوین</td>
<td>همدان</td>
<td>کرمان</td>
<td>کرمانشاه</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

64
الف) توزیع احتمال توفان‌های تندتر در فصل بهار

با توجه به این که در مطالعات اقیمی تعادل پدیده‌های قطعی (مثل توفان‌های تندتر) کم است، به همین دلیل همواره از روش‌های احتمال برای پیش‌بینی این متغیرهای اقیمی و انتخاب روش مناسب برای تحلیل و ارزیابی استفاده می‌شود. در این روش تعادل روداده‌های گسته‌پیکر به جای قطعی برحس احتمال وقوع‌های مرتب می‌شوند و توزیع احتمال آن‌ها ترسیم می‌گردد تا با شناسایی نوع توزیع و پراکنش داده‌ها بررسی داده‌ها روش‌های مناسب صورت گیرد. برای توزیع‌های گسته‌پیکر احتمالی به داده‌ای مرتب به قطعی وقوع توفان‌های تندتر ایران نشان داد که بهترین نوع توزیع احتمالی ویبول سه پارامتر این که در این زمینه، برای نمونه، نمودار سطح به رخ‌داد توفان تندری بهاری تریز به عنوان ایستگاه شناختار دارای پیش‌بینی توفان‌های نتدری در شکل 2 درج گردیده است. نمودار توزیع احتمال رخ‌داد توفان تندری بهاری تریز با میانگین یکتوی ویبول سه پارامتری با مقادیر توفان تندری این استگاه در سطح اطمینان 99 درصد است و نشان می‌دهد که احتمال وقوع فراوانی توفان تندری بهاری در تریز به تعداد 40 درصد و کمتر از آن 99 درصد است و احتمال وقوع بیش از 40 توفان تندری در فصل بهار تریز تناها 1 درصد است.

شکل 2-برازش توزیع احتمال ویبول سه پارامتری به قطعی وقوع توفان‌های تندری بهاری تریز 1996-2010

دانه‌های تغییرات مقادیر حداکثر و حداقل توفان‌های تندری بین 7 تا 34 متغیر است. این میزان از بخش‌های شمال غرب به سمت قسمت‌های مرکزی و جنوبی کشور کاهش می‌یابد. با این‌گونه مقادیر در ایستگاه تریز و کمترین مقدار در بابلسر و بندرعباس محاسبه شده است. بیشینه‌ی میزان چولگی در زاهدان و گرگان و کمینه‌ی مقدار این شاخص در اصفهان، مشهد و بخش‌های غربی و شمال غرب کشور است.
(ب) طبقه‌بندی مناطق مختلف کشور بر اساس هیدرگل وقوع توفان‌های تندرو در فصل بهار
برای تحلیل خوش‌شایی فراوانی وقوع توفان‌های تندرو به‌پاره‌ای ایران، با توجه به شکل دندورگرام حاصل و مشابهت زمانی و مکانی شرایط اقلیمی وقوع توفان‌های تندرو در مناطق کشور، نواحی که از نظر شرایط آب و هوایی وقوع توفان‌های تندروی‌ها همگنی بیشتری داشت با پرش چهار خوش‌شای منطقی طبقه‌بندی شدند (شکل ۳). بر مبنای این پرش ابتغاء تئوری در شمال غربی با ۱۰۳۳ بار فراوانی وقوع توفان تندرو در خوش‌شای اول قرار گرفت، بس از آن در خوش‌شای دوم استان‌های ارومیه، زنجان و اصفهان در شمال غرب کشور قرار گرفتند. در خوش‌شای سوم استان‌های همدان، مهرآباد، کرمانشاه، ایلام، شاهرود، مشهد، بیرجند، اراک، سنندج و خرم‌آباد قرار گرفتند و استان‌های گرگان، بابلسر، زاهدان، شهرکرد، اهواز، شیراز، بوشهر، یزد، اصفهان، کرمان و بندرعباس با کمترین رخداد توفان‌های تندرو در خوش‌شای چهارم دست‌بندی شدند که دیگر گروه‌تأثیرنگر فراوانی وقوع توفان‌های تندرو در ایران هستند.

شکل ۳- درخت خوش‌شایی منتج از فراوانی به‌پاره‌ای وقوع توفان‌های تندرو در ایران بر مبنای روش وارد.
ج) توزیع فضایی وقوع توفان‌های تندری بحره ایران

نقشه مجموع فراوانی رخداد توفان‌های تندری در فصل بهار در شکل ۳ درج شده است. طبقه‌بندی‌های صورت گرفته از نظر مجموع فراوانی وقوع توفان‌های تندری به صورت یک‌نقطه با پهنایدید انگش و زمین‌آمر کریچنگ سیستم اطلاعات جغرافیایی مشخص گردید که این طبقات با توجه به میان‌یابی صورت گرفته با روی کار و مدار بهترین نحوه نمایش داده شده و محاسبه کمترین میزان خطأ و خودهمبستگی بین داده‌ها صورت گرفته است. روش زمین‌آمر کریچنگ به عنوان ابزار سطح پیوسته در میان‌یابی سی‌کمترین میزان خطای سیستم‌دانیک استفاده از توابع همبستگی برای شناخت ساختار فضایی داده‌ها و برآورد خطای مدل طبقات را طوری انتخاب می‌کند که تابع واسطه‌یابی را بهینه‌تر سازد. ملاحظه نشود که فراوانی وقوع توفان تندری بحره از شمال غرب و شمال شرق به سمت شمال و از بخش‌های غرب به سمت مناطق مرکزی و جنوب کشور کاهش چشمگیری در فصل بهار دارد. تمرکز بیشتر توفان تندری در شمال غرب به ویژه در تابستان با ۱۳۲ رخداد، مشاهده گردید. ابستاگه‌های ارومیه، قزوین، زنجان، همدان و همدان با بیش از ۱۰۰ ت Vân تندری پس از یک رخداد بالاترین مقادیر را به خود اختصاص دادند. در این شرایط با ابستاگه‌های واقع در نوار ساحلی جنوبی و شمالی کشور، هموگچون بالسر و بندرعباس، با کمتر از ۱۰۰ ت Vân تندری حداقل فراوانی وقوع توفان‌های تندری بحره ایران را به خود اختصاص دادند.

شکل ۳- توزیع فضایی مجموع فراوانی وقوع رخداد توفان تندری بحره ایران ۱۹۶۰-۱۹۸۰

۵) پهنای بندی فضایی تقاطع مجموع و میانگین وقوع وقوع رخداد توفان تندری بحره ایران

در تقسیم‌بندی می‌باشد در فصل بهار با روش تحلیل خوشه‌ای وارد بر اساس مجموع و میانگین فراوانی وقوع توفان‌های تندری با استفاده از روش تحلیل خوشه‌ای سلسله‌مراتبی وارد با متوسط فاصله‌ای کلیده‌ای بدون برخ دادن خوشه‌ها، برای مشخص شدن تفاوت طبقه‌بندی‌ها و مشخص شدن طبقه‌بندی مناسب خوشه‌ها از طبقه‌های اول برداشت و تفسیر شد که بر اساس آن، پنج گروه

۶۷
مطابق شکل ۵ مشخص شدند. در گروه اول، ایستگاه‌های ارومیه، قزوین، و زنجان قرار دارند. در کل، در این بخش بیشتر از ۴۴ توقف تندی در فصل بهار روی می‌دهد، از بین ایستگاه‌های موجود در گروه سوم، که شامل ایستگاه‌های همدان، ازبیک، شاهرود، کرمانشاه، و مشهد است، مهرآباد با ۵۰ و مشهد با ۴۴ توقف تندی بیشترین و کمترین فراوانی را به خود اختصاص داده‌اند. ایستگاه‌های سمندج، خرم‌آباد و اراک در غرب میانی و بیرجند در شرق به ترتیب واقع در گروه چهارم، متوسط حدود ۳۵۰ توقف تندی را در فصل بهار داشتند. کمترین توقف تندی به وقوع پیوسته در فصل بهار متعلق به گروه یکم است. ایستگاه‌های موجود در این بخش در سواحل دریای خزر و سواحل جنوب و بخش‌های مرکزی هستند (شکل ۵).

نتیجه‌گیری

در پژوهش حاضر به بررسی بلوندسپت توقف‌های تندی ایران در فصل بهار و شناخت توزیع مکانی آن پرداخته شد. در بررسی ویژگی‌های آماری فراوانی در توقف‌های تندی فصل بهار، به این نکته می‌پرداختی که بیشترین توقف‌های رخداد این مخاطره در دو ماه اول فصل بهار مخصوصاً ماه می (اردیبهشت) است و در ماه زودتر از فراوانی وقوع توقف‌های تندی به طور چشمگیری کاسته می‌شود. بررسی فراوانی‌های آمار توصیفی مشخص کرک که توزیع فراوانی توقف‌های تندی تصادفی و گسسته بوده و بر این اساس، بهترین روش برای پیش‌بینی احتمال وقوع توزیع احتمال وقوع توزیع فراوانی توقف‌های تندی نشان دهنده، است. توزیع احتمال وقوع توقف‌های تندی نشان دهنده، غرب غرب و غرب کشور در فصل بهار، است.
برای مشخص شدن نحوه پرداخت ضمانت توانایی تندری، به دلیل حجم زیاد داده‌های مورد بررسی و پرداخت ضمانت

ایستگاه‌ها، با استفاده از تحلیل خوشه‌ای به تشخیص‌بندی مناطق غواصی‌کننده کشور به گروه‌های همکنون با بیشترین شیب‌دار

dرون‌گروه‌های اقمار گردید. به‌دنبال منظور، بر مبنای بررسی دندورگی‌های حاصل از خوشه‌ی‌بندی وارد بر تحلیل فراوانی ویژه‌‌های

مجمع و متوسط توانایی تندری با توجه به مقادیر فراوانی‌ها و مقادیر حداکثر و حداقل داده‌ها در مناطق که از نظر شرایط

اقلیمی و ویژگی‌های فراوانی تندری مشابه زمین‌های و مکان‌های داشتنی اقمار به روش خوشه‌ای گردید. نتایج خوشه‌بندی برای یافتن

مکان‌های همکنون از نظر همبستگی خواص و زمان ویژگی‌های تندری می‌باشد و جدول گروه جداگانه با روند مشابه شمل غرب

غرب؛ نیمی‌های جنوبی؛ نواحی شمالی؛ شمال شرقی و نواحی شرقی و مرکزی است که در هر یک از قلمروهای منطقه

پنج‌گانه باید شده خطر ویژگی‌های تندری تقریباً یکسان است.

از لحاظ توزیع مکانی ویژگی‌های تندری سیستم‌پذیر؛ صورت‌گیری خورشید دوره و قوی‌ترین رحیمی (۱۳۸۵)؛

حداکثر فراوانی در شمال غرب به مثابه یک ایستگاه تندری مشاهده شده است. پس از آن نواحی غرب و شمال شرق کشور بیشترین

فراوانی را دارند که در این منطق به خصوص در استان‌های بزرگ و پایینی‌ها کمتر از ۱۴۰۰ تندری تفاوت مشاهده شده است. بی‌شاید مبینی‌های ویژه در شمال غرب و غرب کشور به شرایط توپوگرافی، همچون

وجود کوهستان‌های مرتفع، جهت‌گیری ناهمواری‌ها، وجود رشته‌کوه و شرایط اقلیمی ویژه این منطق، مرتفع است. شناخت

روش‌های مطالعه با مخاطبی و توانایی تندری می‌تواند بررسی ماهیت ویژگی و توزیعی زمین‌های و مکانی توانایی در منطقه مهم است. به

می‌تواند در میان کردن آمادگی‌های لازم کمک کند. نتایج مطالعه حاصل بر از مطالعات خاصی به کار نشده و محاسبه ویژگی‌های

توانایی تندری، تاکید دارد. این نتایج، می‌توان گفت با توجه به اینکه به ویژگی‌های تندری در غرب و به‌خصوص شمال غرب

ایران امروز معمول و جزو ماهیت طبیعی اقلیم منطقه است. می‌توان با به‌بیننی کردن محصولات کشاورزی و دادن آگاهی‌های لازم به

مردم در کاهش خسارات و صدمات وارد شده‌گام پرداشت.

منابع

جلالی، مسعود. علی‌اکبر رسولی‌نیا و بهزوری ساری صراف. ۱۳۸۵. توانایی تندری و بارش‌های ناشی از آن در محدوده‌های شهر اهر. جغرافیا و

برنامه‌ریزی، ۱۴۲۲-۲۲-۲۵-۳۳.

حجاجی‌زاده، زهرا. ۱۳۷۹. بررسی عوامل سه‌بعدی‌ی بارش و توانایی تندری یا وضعیت بر در غرب کشور. مجله دانشگاه ادبیات و علوم

انسانی دانشگاه تربیت معلم، ۳۹: ۴۵-۵۳.

خوشحال دستجردی. جوادی و بوسف قوی‌ترین رحیمی. ۱۳۸۶. شناسایی ویژگی‌های سوانح محیطی منطقه شمال غرب ایران (نموده مطالعاتی)

خطر توانایی تندری در تبریز. مرکز علوم انسانی، ۵۳: ۱۱۵-۱۱۵.

علی‌جنتی، بهلول. ۱۳۷۸. آب و هوا/ایران. چاپ سوم. انتشارات پیام نور، تهران.

قوی‌ترین رحیمی. بوسف. ۱۳۹۰. کاربرد شناخت هواپیمابری ماهیت و توانایی تندری روز ۵ اردیبهشت ۱۳۸۹ تبریز. فقبال جغرافیایی، ۴۴: ۲۱۸-۲۱.

در تحلیل فضایی دیده‌های Digital Atmosphere ۲۰۰۰ اقلیمی ایران: فصلنامه جغرافیایی سرزمین، ۳۶: ۵۸-۶۵.


Olafsson, H. and et al. 2004. *Seasonal and interannual variability of thunderstorm in Island and origin of air masses in the storm*.

