آسیابپذیری معایر در شهرهای لرزه‌خیز بر اساس مدل IHWP
در ناحیهٔ سه منطقه‌ی کلان شهر تبریز

اصعب‌الدین علی‌اکبری

2. نشزه تحلیل فضایی مخاطرات محیطی، سال دوم، شماره 1، بهار 1314
صفحات 16-1

چکیده
در شهرهای لرزه‌خیز، برنامه‌ریزی شهری ناگریز از آسیابپذیری معایر لرزه‌ای است. این مقاله می‌تواند فرم‌رسی و
الگوی آسیابپذیری لرزه‌ای معایر شهری را با دیدگاه برنامه‌ریزی پیشگیری در ناحیه‌ی شهر کلان شهر تبریز آرایی
کند. در این مقاله، داده‌ها و لیبره‌های اطلاعاتی با روشنایی تهیه و با روش‌های رتبه‌بندی و امتیاز‌دهی و با
بردارش شده‌اند. جامعی آماری شبکه شهری معایر ناحیه‌های منطقه‌ای IHWP در محیط GIS استفاده از رویه
کلاه شهر تبریز است. نتایج نشان می‌دهد که مجموعه‌ی آسیابپذیری معایر شهر تبریز، برنامه‌ریزی شهری
جهت مقابله با مشابه‌های تجاری تحقیقی و فرامنطقه‌ای دلایل اصلی آسیابپذیری معایر هستند. در معایر کم عرض
(8 تا 10 متر)، درجه‌ی محوریت دردر در ضریب آسیابپذیری لرزه‌ای در معایر شهری شاخه‌تاریک فراوان‌تر از افزوده‌ی
جنوب رودخانه‌ای دارد. کانون شدت فضایی آسیابپذیری معایر در مرکز ناحیه قرار دارد و بر حسب‌های
ولی عصر، شریعتی، عارف و رازی منطقی است. بدین ترتیب، به محاسبه زمین‌لرزه‌ای معایر کارامد و پایدار در شرق
نواحی واقع می‌شوند.

واژگان کلیدی: آسیابپذیری لرزه‌ای، شبکه معایر، روشنایی IHWP ناحیه‌ی سه تبریز

Email: aliakbariesmaeil@yahoo. com
مقدمه

شهر ساختاری چنند لیا، از نظر عناصر و اجزای کالبدی و غیرکالبدی (کارکرده، مکانیکی و اجتماعی) است که در پیوند به همکاریهای گروه‌ای، میان این اجزا دو سطح از روابط متقابل و کنش‌های فیزیکی و مکانیکی وجود دارد. نخست، رابطه میان تغییرات فیزیکی و مکانیکی کالبد و غیرکالبدی جمع‌بندی و تعاملات بارگذاری‌ها این سطح، دوم، رابطه میان تغییرات غیرکالبدی و سایر میان‌های اجتماعی و فیزیکی باعث ساختاری شده است. برای استفاده در مطالعات و اصولی این موضوع، استفاده از مدل‌های اجتماعی و فیزیکی لزه‌یا مطالعاتی از همین ماهیت جدید و جویانه می‌شود.

فهوه رابطه میان لزه‌یا و اجتماعی به‌دست آمده، از طریق مطالعات اجتماعسنجی شهروندان است. این پیچیدگی‌ها نشان‌دهنده از توده‌ی آن و اثرگذار در ساختاری حکایت دارد، بلکه از ماهیت چندگونه‌ی و میان‌های اجتماعی این مطالعات ناشی می‌شود که بر تابعیت دیدگاه‌های نظری در این زمینه نیز افزوده است. نه‌گاه با مخاطرات محیطی (عومو) و آسیب‌شناسی لزه‌یا (اختصاصی) موضوعی که بارگیره (هادیزاده، 1382: 290 و دانش سیستم‌شناسی (نافوقی، 1372: 71) از همین ماهیت جدید و جویانه می‌شود.

در برنامه‌ی برای کاهش مخاطرات محیطی، در رأس آن، اسپیتزپیری از لزه‌یا سه دیدگاه اصلی وجود دارد؛ دیدگاه انفجار: بر اساس این دیدگاه، چون نمی‌توان مخاطرات را پیشگیری کرد، باید برای رویارویی با آن آماده شد و اقدام‌های اصلاح‌دوآمکرد دید م фаقدیت‌های پزشکی و درمانی، امداد و نجات، بهداشت و سلامت، مهار آتش، ارتباطات و سیستم‌های هسته‌ای و عملیات جستجو (Macleod and et al, 1998: 815-816) از اقدام‌های ضروری در این دیدگاه است. کلاسیک از فجاعت‌های خودحافلی افراد و خودکارکنان 1993: 732 از جمله انسدادی یک بی‌دردسر این دیدگاه است.

دبیرگزار: این دیدگاه بر مبنای پذیرش مسئولیت پیشگیری و برنامه‌ریزی دولت‌های ملی و محلی برای کاهش مخاطرات محیطی استوار است. بررسی‌ها نشان می‌دهد دیدگاه پیشگیری، در صورت اجرای کامل‌ترین موفقیت‌های فراوانی در کاهش خطر به همراه با وابستگی‌های ایرانی (Camerer and Kunreuther, 1989: 564-565). دیدگاه مذکور با دو خط شیب مشخص به برنامه‌های پیشگیری از اسپیتزپیری لزه‌یا می‌پردازد. سیاست‌ها و مداخلات مقاوم‌سازی سازهای (شاخص ساختاری) است که اساساً نوعی برخورداری شوره‌سازی شده‌شود. کالبدی و مجارتر با مسیر ملی در حاله‌که، خط شیب مشکی تحمل سیاست کالبدی شهر را در ترکیب با عوامل غیرکالبدی مطالعه می‌کند. این عوامل کارکردهای اقتصادی (نظام کاری زمین و پیش‌بازه‌های فعلی)، کارکرد اجتماعی (به‌رهنی سکوت و تراکم جمعیت) کارکرد فضایی (الگوهای توزیع فعلی‌ها، نظام هم‌چوری و شعله عامل‌های بارز‌تر) و کارکرد ارتباطی (الگوی معاونی و جریان ترافیکی) هستند که مجموعاً در بندر مکانی شهر یا جایی که عامل و نیروی اصلی لزه‌یا گسترا (گسل) را در خود
داسد، مكان باوب و بارگذاری مي شوند. باعیین ترتیب در این خطا مشی، اسپیشاناسی لرزهای مقوقهای جامع‌گر، کنار و مكان مند در قالب تصمیم‌گیری چند معیار است.

آشکارا مهم‌ترین وجه اسپیشپذیری لرزهای شهر، اسپیشپذیری کالبد شهر است. کالبد شهر از عناصر مختلف تشکیل شده است که هرکدام معیارها و روشن‌افزار اسپیشپذیری خاص خود را دارند. از منظر اسپیشپذیری لرزهای در نظام کاربری زمین، عنصر کالبدی شهر را می‌توان یافته شهر، سه‌توده و فضا. زیرساختهای شهر، و در رأس آن:

شکه معابر (آمینی و شهرداران، 1389: 186) بیان کرد.

خیابان‌ها و ممبرها از مهم‌ترین فضاها و حساب‌رسین اجزای کالبدی شهر هستند که در برقاری ارتباط میان فضاها و فعالیت‌ها (بحرانی، 1389: 202)، برنامه‌بری حمل‌ونقل و ترافیک شهري (96: 2003)، اشغال فضا، پیدایی شکل شهر و طراحی شهری تأثیر دارند. همه‌نین، خیابان‌ها و ممبرها در اسپیشپذیری لرزهای و بر همین مینا، برنامه‌بری برای کاهش مخاطرات محیطی، در راس آن زاوله، (154: 2005) و اکثر، شیوه‌ی معابر در اسکان جمعیت توزیع و تراکم جمعیت، تراکم ساختارمندی، مکان‌بندی فعالیت‌ها و نظام کاربری زمین، استقرار تغییر و دهنده شکل گیری الگوهای سفر و جریان‌های ترافیکی با نظام دسترسی به مراکز خدماتی شهر نقش اصلی بر عهده دارد. درواقع بسیاری از خصوصیات کالبدی، کارگری و اجتماعی شهر به تبعیت از موقیعت، ظرفیت و کارکرد شیوه‌ی معابر شکل می‌گیرد.

برهمین اساس، شیوه‌ی معابر و اسپیشاناسی لرزهای معابر از مهم‌ترین عوامل در تعیین ضریب اسپیشپذیری لرزه‌ای شهر است. از منظر لرزهای شیوه‌ی کارآمد شیوه‌ی است که در زمان بروز بحران پایدار بوده و سطح ظرفیت ترافیک خود را حفظ کند (قلیان، 1386: 11). در این زمینه شامل‌دی مطالعات ارزیابی لرزه‌ای معابر بر تعیین معیارها و انتخاب شاخص‌های اسپیشپذیری منبکی است. علاوه بر جامعیت و نوع معیارها، انتخاب درست معیارهای اصولی و افزایش و ترکیب توانمن این معیارها نقش اساسی در ارزیابی اسپیشپذیری هنگام معابر دارد. جدول شماره‌1 انواع معیارها و رابطه‌ی آن‌ها با اسپیشپذیری لرزه‌ای نشان می‌دهد.
جدول ۱: عوامل مؤثر در آسیب‌پذیری شبکه‌های میان قافلی طی مسیر زرخیز

<table>
<thead>
<tr>
<th>میزان آسیب‌پذیری</th>
<th>توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمتر</td>
<td>مسافت بین کاربری‌های مختلف</td>
</tr>
<tr>
<td>کمتر</td>
<td>ارتباط بین کاربری‌های مختلف</td>
</tr>
<tr>
<td>کمتر</td>
<td>ماسک‌بندی شده در سطح محدودیت</td>
</tr>
<tr>
<td>کمتر</td>
<td>کاربری‌های با هم یک‌دیگر</td>
</tr>
<tr>
<td>کمتر</td>
<td>دارای دسترسی مناسب با یکدیگر</td>
</tr>
<tr>
<td>کمتر</td>
<td>قابل‌پذیری شبکه</td>
</tr>
<tr>
<td>کمتر</td>
<td>صامتیت شبکه</td>
</tr>
<tr>
<td>کمتر</td>
<td>سرعت، طول و امنیت شبکه</td>
</tr>
<tr>
<td>کمتر</td>
<td>درصد گره‌های ترافیکی شبکه</td>
</tr>
<tr>
<td>کمتر</td>
<td>شدت ترافیک استفاده‌کننده</td>
</tr>
<tr>
<td>کمتر</td>
<td>نسبت به صرف افزایشات جدایی‌های میان بین مشتری</td>
</tr>
<tr>
<td>کمتر</td>
<td>رعایت مقررات زوال در احداث تأسیسات بی‌سنسی رویساتی</td>
</tr>
<tr>
<td>کمتر</td>
<td>درجه محصول بین رابطه</td>
</tr>
</tbody>
</table>

منبع: مراکز مطالعات مقابله با سوانح طبیعی ایران: ۱۳۸۳: 11

در برای (1) ظرفیت دیگر و سایری مورد، تأکیدن مطالعات متعددی انجام شده است. چنین و نوجیما (Nojima, 1998: 12 در مطالعهی کاریی لزرسی به‌گزارا در ارمنی با زبان رایانه‌ای هم‌سوزی مسئله میان رابطه ترافیک را با زبان بومی، بستنی و کردن در، موجب در میان رابطه کمتر شیبه‌گی انتقالی و در رابطه با زبان به دست آمده‌اند. از نظر دانشمندی، بررسی آسیب‌پذیری لزرسی شیبه‌گی به این نتیجه رسیده‌اند که با Lee and Yeh، احتمال حیات میزان اسید بیمار ۱۶ رصد و بدون آن ۷ رصد کاهش می‌یابد، لی و ی (2007) در سال ٣۳، پس از بررسی زوال به‌طور علمی به کمتر از ۴ متر معرفی کردن.
دآدها و روش کار

محدودیت کالبدی ناحیه سی یک از سه ناحیه منطقه‌ی یک شرق کلان شهر تبریز است که با ۳۳۲۱۲ نفر جمعیت در سال ۱۳۹۰ حدود ۲۴ درصد جمعیت منطقه‌ی یک (۳۱۲۰۵۲۴ نفر) و ۵ درصد جمعیت شهر تبریز را در محدودیت خود اسکان دارد. این ناحیه با ۶۵۵ هکتار مساحت، ۴۳ درصد مساحت منطقه (۱۵۶۱ هکتار) و ۳/۷ درصد مساحت شهر تبریز را در محدودیت خود دارد. تغییرات جمعیتی ناحیه از ۱۲۶۰ نفر در سال ۱۳۹۰ تا ۳۳۲۱۲ نفر در سال ۱۳۹۴ به این معنای که آشکارا بالاتر جاذبه‌ها و ظرفیتهای به دست پیامدهای فضای شهری و زمینی بوده و این در پایداری و تمرکز جمعیت است.

از نظر وضعیت استقرار طبیعی رزرونهای ناحیه سی نه تنها در پنهنه شیبگرد کلان شهر تبریز واقع است، بلکه در حیات از لرندی گلی اصلی شمال تبریز (معماری، ۱۳۸۰) و برگ‌سای های منشأ از ان در تواهي گوناگون قرار دارد.

ساختارسازی اولیه در محدوده کونوی ناحیه سی با احداث شرکت ویلی عصر در سال ۱۳۵۵ آغاز شد که اولین طرح شهرک‌سازی در این محدوده ۲۵ ساله از ۴۱ درصد پذیرفته و در اکثریت منطقه‌ی شرق شهر بود. در سال‌های اخیر، تغییرات گسترده در کاربری اراضی باید و فضای سبز به کاربری مسکونی (قریب، ۱۳۸۴) تراکم جمعیت و ساختاری را در این ناحیه افزایش داده است. این ناحیه با ۲۵ درصد از محسور و شرایط ناحیه اصلی شهری با انگال شهری‌های تجاری و خدماتی در مقیاس منطقه‌ای و فراپراکنی به ویژه‌های خارجی و فعلیت‌های تجاری درآمدند.

رون مکرور نش در سراسر به جسد زیرسای از کاری و غیرکاری (جمعیتی اکثریت) به ان ناحیه‌ها. از این طرفه‌ها که این تغییرات در جمله در بستر جغرافیایی پنهن لر و ناحیه‌ی جدید افتاده است، از این روزهای اثر آن از منظر آسیبپذیری لرندی گلی بسیار اهمیت دارد. شکل شماره ۱ موقعیت ناحیه سی را در نظام تقسیم‌های کالبدی شهر تبریز نشان می‌دهد.

1. Fuzzy logic
2. Analytic Hierarchy Process
روش این پژوهش توصیفی-تخمینی است و جامعی از آماری آن شبکه معابر ناحیه سی در منطقه یک کلان شهر تبریز است. داده و لایه‌های اطلاعاتی با روش استاندارد تهیه گردیدند و با استفاده از روش دلیلی رتبه‌بندی و امتیازدهی شدند. پردازش این داده‌ها با بهره‌گیری از مدل تحلیل سلسله‌ریتمی وزنی معکوس 1 از GIS در محیط IHWP صورت گرفت. داده‌ها و روش کار در ارزیابی آسیب‌پذیری معایب به شرح زیر است:

الف) تعيين شاخه‌ها يا لايه‌ها: ابتدا، بر اساس بررسی پيشينه مطالعات و نيازها و ملاحظات محیط‌شناسی قلمرو پژوهش، عوامل اصلی از ارگان در ضریب آسیب‌پذیری معایب در هشت شاخه انتخاب شدند که عبارتند از:

1. فشار و افزایش سطح سروسبه، ترقیک به نسبت حجم ترقیک به نظریت معایب (آموزه، 1376: 101)، دسترسی به مراکز درمانی و خدماتی و نظام کاربری زمین.

ب) ارزیابی آسیب‌پذیری لرزه‌ای معایب: در این مرحله، ابتدا شاخه‌ها (داده‌ها) بر اساس روش دلفی رتبه‌بندی شدند. سپس، معکوس رتبه‌های برای برای وزن آن لایه در مدل IHWP منظور گردید. برای استانداردی نشان دهنده نظر آسیب‌پذیری عدد هشت و گام‌هایی ترتیب شاخه عدد یک (حیفه، 1387: 115) را دریافت کرد. سرانجام، با توجه به نظری و فرض‌های وزن‌دهی به شاخه‌ها تعيين شد. جدول 3 فرض‌های وزن‌دهی به شاخه‌ها را نشان می‌دهد.

1. Inversion Hierarchical Weight Process
جدول 3: شاخص‌های انتخاب شده و فرض‌های وزنه‌های

<table>
<thead>
<tr>
<th>فرض‌های وزنه‌های</th>
<th>میانگین رتبه</th>
<th>شاخص براساس روش دقیقه</th>
<th>شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>هرچه از گسل دورتر است</td>
<td>10</td>
<td>1</td>
<td>بسیار امیدواری</td>
</tr>
<tr>
<td>هرچه کیفیت انتهای بهتر است</td>
<td>9</td>
<td>2</td>
<td>بسیار امیدواری</td>
</tr>
<tr>
<td>هرچه درجه محصوری بیشتر است</td>
<td>8</td>
<td>3</td>
<td>بسیار امیدواری</td>
</tr>
<tr>
<td>هرچه تراکم ساختمانی بیشتر است</td>
<td>7</td>
<td>4</td>
<td>بسیار امیدواری</td>
</tr>
<tr>
<td>هرچه حوزه ترافیکی بیشتر است</td>
<td>6</td>
<td>5</td>
<td>بسیار امیدواری</td>
</tr>
<tr>
<td>هرچه تراکم گرمایی بیشتر است</td>
<td>5</td>
<td>6</td>
<td>بسیار امیدواری</td>
</tr>
<tr>
<td>هرچه میزان خطرزاپدیده کاری بیشتر است</td>
<td>4</td>
<td>7</td>
<td>بسیار امیدواری</td>
</tr>
<tr>
<td>هرچه دسترسی به مرکز درمانی بیشتر است</td>
<td>3</td>
<td>8</td>
<td>بسیار امیدواری</td>
</tr>
</tbody>
</table>

گچی مسجدی امتیاز‌های: با استفاده از میانگین امتیاز هر شاخص و تعداد طبقه‌ای که هر شاخص درست، امتیاز هر رده (طبقه) از هر شاخص به‌دست آمد و در محیط GIS در نقشه‌ها اعمال شد.

جدول 4: طبقه‌نامی و امتیاز طبقه‌ها (رده‌ها) شاخص‌های اسپیدپزشکی را نشان می‌دهد که بهترین امتیاز با بهترین امتیاز آغاز می‌شود.

این امتیاز‌ها براساس بهترین تا بدترین در داخل پرانتز نوشته شده است. در ستون امتیاز نیز اعداد به‌دست آمده از فرمول ثبت شده که همان امتیاز اعمال شده در نقشه‌هاست.
جدول ۴: طبقهبندی و استفاده شاخص‌های آسیب‌پذیری

<table>
<thead>
<tr>
<th>شاخص</th>
<th>طبقهبندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمتر از ۰ - ۰.۶</td>
<td>(1) درجه محصوریون ۱</td>
</tr>
<tr>
<td>۰.۶ - ۱</td>
<td>(۲)</td>
</tr>
<tr>
<td>۱ - ۱.۶</td>
<td>(۳)</td>
</tr>
<tr>
<td>۱.۶ - ۲</td>
<td>(۴)</td>
</tr>
<tr>
<td>بیشتر از ۲</td>
<td>(۵)</td>
</tr>
</tbody>
</table>

تراکم جمعیت (۵)

<table>
<thead>
<tr>
<th>شاخص</th>
<th>طبقهبندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمتر از ۰ - ۰.۶</td>
<td>(۶) درجه محصوریون ۱</td>
</tr>
<tr>
<td>۰.۶ - ۱</td>
<td>(۷)</td>
</tr>
<tr>
<td>۱ - ۱.۶</td>
<td>(۸)</td>
</tr>
<tr>
<td>۱.۶ - ۲</td>
<td>(۹)</td>
</tr>
<tr>
<td>بیشتر از ۲</td>
<td>(۱۰)</td>
</tr>
</tbody>
</table>

تراکم ساختنی (۷)

<table>
<thead>
<tr>
<th>طبقهبندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمتر از ۰ - ۰.۶</td>
</tr>
<tr>
<td>۰.۶ - ۱</td>
</tr>
<tr>
<td>۱ - ۱.۶</td>
</tr>
<tr>
<td>۱.۶ - ۲</td>
</tr>
<tr>
<td>بیشتر از ۲</td>
</tr>
</tbody>
</table>

در محصوریون درجه ۲ تودن اتتذا طثقات ساختمان واحیه در ۳ ضزب شذ تا ارتفاع ساختمان ته متز مشخص شود.

سپس، تا تقسیم عذد ته معثز مزتوطِ هز قطعه ی ساختماوی درجه ی محصور تودن ته دست آمذ. تذیهی است هز چه ایه رقم تالاتز تاشذ، وشان اس آسیة پذیزی تیشتزی دارد.

در محصوریون اتتذا طثقات ساختمان واحیه در ۳ ضزب شذ تا ارتفاع ساختمان ته متز مشخص شود. سپس، با تقسیم عدد بهدست آمده به معرب مربوط‌های طبقه‌بندی ساختنی درجه محصوریون به‌دست آمد. بله، به‌دست آمد. ناشان از آسیب‌پذیری بیشتری دارد.

[DOI: 10.18869/acadpub.jsaeh.2.1.1]
ٚشزیه تحلیل فضایی مخاطزات محیطی، سال دوم، شماره 1، بهار 1314

(۵) تلفیق لایه‌ها: با استفاده از ایراز Raster Calculator، ستون‌های امتیازی مربوط به هرکدام از لایه‌ها جمع شدند. به‌این‌ترتیب، مجموع 8 ستون مربوط به 8 لایه‌ی اطلاعاتی برای هرکدام از سطح‌های شده است که امتیاز هر واحد ساختاری را به‌لحاظ آسیب‌پذیری از سایر واحدها مشخص کنند. در این‌جا عملیات جئو داده‌ها در یک مرحله صورت گرفته است. سرانجام، از تلفیق لایه‌های اطلاعاتی نقش‌های نهایی آسیب‌پذیری ناحیه تهیه شد و بر اساس آن سطوح و ضریب آسیب‌پذیری لرزه‌ای شیکگی معیار تحلیل شد.

شرح و تفسیر نتایج

نتایج و پایه‌گذاری نهایی آسیب‌پذیری لرزه‌ای معیار در ۵ کلاس آسیب‌پذیری خیلی کم، کم، متوسط، زیاد و خیلی زیاد طبقه‌بندی شد (جدول ۵ و شکل ۲). همان‌طور که در جدول ۴ مشاهده است، از کل معیار ناحیه ۱۸۴۶۲ درصد آسیب‌پذیری خیلی کم، ۲۹/۳۶ درصد آسیب‌پذیری کم، ۲۱۶/۷۷ درصد آسیب‌پذیری متوسط، ۱۴/۳۱ درصد آسیب‌پذیری زیاد و ۲۲/۶ درصد دارای آسیب‌پذیری خیلی زیاد است. به‌این‌ترتیب، با احتمال معیار که آسیب‌پذیری متوسط، زیاد و خیلی زیاد (با عنوان معیار و محورهای آسیب‌پذیری) دارند، ۵/۳ درصد با بیش از نیمی از معیار ناحیه از نظر لرزه‌ای آسیب‌پذیر و حدود نیمی دیگر با آسیب‌پذیری کمتر (و یا به‌نین‌گا پایدارتر) هستند. در درون پوشش آسیب‌پذیر و ناپایدار بیش از ۲۰ درصد معیار ضریب آسیب‌پذیری زیاد و خیلی زیاد دارند. این معیار، که عمداً معیار شرایطی با کارکرد تجاری و خدماتی در مقیاس فراموطه‌ای و یا معیار فرعی منتهی به این شرایط‌ها هستند، تراکم جمعیتی باید بر صورت جمعیتی ساکن و نشان‌دار دارد.

جدول ۵: میزان آسیب‌پذیری شیکگی معیار ناحیه‌ی سه

<table>
<thead>
<tr>
<th>درصد</th>
<th>طول معیار (متر)</th>
<th>آسیب‌پذیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>خیلی کم</td>
<td>۲۵۲۶۱/۲۴۴</td>
<td>۱۸۴۶۲</td>
</tr>
<tr>
<td>کم</td>
<td>۲۴۵۷۷/۷۷۷</td>
<td>۲۹/۳۶</td>
</tr>
<tr>
<td>متوسط</td>
<td>۴۴۳۹۹/۵۲۷</td>
<td>۲۱۶/۷۷</td>
</tr>
<tr>
<td>زیاد</td>
<td>۲۴۵۱۰/۳۹۵</td>
<td>۱۴/۳۱</td>
</tr>
<tr>
<td>خیلی زیاد</td>
<td>۸۵۴۸/۵۴۶</td>
<td>۲۲/۶</td>
</tr>
<tr>
<td>کل</td>
<td>۱۳۷۸۴/۴۳</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

الگوی توزیع فضایی آسیب‌پذیری شیکگی نشان‌دهنده‌ی افزایش میزان آسیب‌پذیری معیار از شرق به غرب و از شمال به جنوب است. کانون ناهید فضایی ضریب آسیب‌پذیری معیار در مرکز ناحیه قرار دارد و بر خیلی‌های ولی عصر، شرکتی عارف و رازی منطقه است که ضریب آسیب‌پذیری خیلی زیاد دارد. از این کانون فضایی به طرف شرق از شدت آسیب‌پذیری شیکگی با ضریب تغییرات منفی‌های می‌شود. در جهت شرق، الگوی کاهش آسیب‌پذیری شیکگی روتوی پیوسته و نظم دارد. شیکگی معیار با ضریب ۰/۰/۰ آسیب‌پذیر که خیلی کم در این بخش از منطقه گسترش داده‌اند (شکل ۲). اما علاوه بر ضریب آسیب‌پذیری شیکگی با شدت کمتر به‌صورت نامنظم کاهش می‌یابد. در این فسماً، به استثنای محور توانای (با آسیب‌پذیری زیاد)، شیکگی عمداً دارای ضریب آسیب‌پذیری متوسط است.

با این‌ترتیب، از نظر فضایی کارآمدترین و پایدارترین معیار در مقیاس آسیب‌پذیری لرزه‌ای در شرق ناحیه قرار دادن الگوی فضایی آسیب‌پذیری ارزش‌های شیکگی معیار ناحیه را می‌توان در دو بخش شیکگی غربی و شیکگی شرقی بیان کرد. شیکگی شرق ناحیه در الگوی کلی، معیار اصلی و محورهای فرعی شیکگی با ضریب خطر و آسیب‌پذیری
ارتفاع گوشه سمت چپ صفحه 1 تا 30 درصد است و در برخی قسمت‌ها به بیش از 30 درصد می‌رسد. این شکوه عمدتاً دارای کاربری مسکونی، تجاری و خدماتی است و فضای سبز آن به فضای رفاهی و میدان‌ها محدود است. در بندنی معابر که معابری آبس‌پذیری لرژهای مبوعه تراکم ساختمانی سازی این فضای باید به سبب وجود ندارد. ولی در معابر با آبس‌پذیری کم و خیلی کم فضایی یار و وضعیت بهتری دارد. کیفیت بالا و سهم بیش از 20 درصدی باهنا نوسان به مجرد عبور برای شکوه تهیه‌یا مشخصی آب‌شناسی نیست. باوجود این، اثر تعبیه‌کننده سایر شاخه‌ها بویژه فاصله و نیروی لرزشی گسی، عدم قطعیت و نسبت بودن شاخه‌های کالبدی را افزایش می‌دهد. همچنین، عرض معرض و خط ناشی از تخریب برخی به‌نهایی فرسوده (تعیینی و تعیینی) موجود در این معابر همواره یک عامل اولیه در آبس‌پذیری و مقاومت نهایی بافته نوسان است.

ечение معابر اصلی موجود در شیکه آبس‌پذیری در تاسیس بیشتری از انرژی توده‌های ساختمانی مشرف به آن قرار دارند. ولی در کوهچه‌ها و معابر فرعی با عرض کم (8 تا 10 متر) ارتفاع توده‌های ساختمانی عموماً با عرض معابر تناسب ندارند و مشخصاً دارای درجه‌ی محصوریون بالاتری هستند. نقشه‌ی تراکم جمعیتی ناحیه نشان می‌دهد تراکم جمعیتی در بانه این معابر حدود 61 تا 150 نفر در هکتار است.
مشخصه‌های آسیب‌پذیری شیب‌های معابر ناحیه‌های خنثی و در جهت محصورودن و تراکم جمعیتی محدود نیست. تنها نیز هوشمندی نشان می‌دهد معابر دارای آسیب‌پذیری بالا در فاصله کمرت از گسل و فاصله بیشتر از مراکز امدادی و درمانی قرار دارد. همچنین، دارای جمعیت ترافیک بیشتر و کمیت اینها پایین‌تر هستند و کاربردی‌هایی که به اینمی پسیاری نیاز دارند (مثل، تأسیسات برق و گاز) در بندن آنها وجود دارد.

بلاور ویلیصلر که مکرو اصلی ورودی و پرتروفکتورین محور و طولانی‌ترین خیابان ناحیه است درای ضریب آسیب‌پذیری خیلی‌زیاد است. این معابر شیب نسبتاً زیادی دارند و تحقیق غیرهم‌سطح در شهرستان مسیر آن احتمالاً شده است. وجود ساختار‌های بلند در نزدیک شیب تحقیق ضریب استفاده و آسیب‌پذیری آن را افزایش داده است. همچنین، وجود کاربردهای فرمان‌های جابه‌جایی سفر (مانند، دادگستری استان، پلیس قانونی، سازمان مسکن و شهرسازی، شرکت مطالعاتی آب و خاک و چند مرکز اموزش متوسطه در محدوده به مجاورت تحقیق) سبب رفتاری و تمکن سفر از نقاط کانونی شهر به این محور می‌شود و از این طریق بر ضریب و ظرفیت آسیب‌پذیری زیرزمین‌ها یا آن تأکید می‌گردد.

جدول شماره ۳: ظرفیت و ضریب آسیب‌پذیری شیب‌های معابر را به تفکیک عرض معابر ناحیه مند. در کل، معابر ناحیه اغلب دارای عرضی بیش از ۸ متر هستند و بسیاری به صورت معابر به‌طور طراحی شده‌اند. در تقسیم‌بندی کلی، ۴۰ درصد معابر دارای عرض ۸ تا ۱۰ متر، ۱۶ درصد عرض ۱۰ تا ۲۱ متر و ۲۳ درصد عرضی بیش از ۲۱ متر دارند. در این شکل، ۵۲ درصد عرض غیر‌هم‌سطح و ۳۰ درصد بزرگ وجود دارد به عنوان فضای و ساختار کلی ناحیه را تعیین می‌کند. براساس اطلاعات جدول ۶ از ۱۳۲۳۰۷ متر طول شبکه ۵/۱ متخلخلی درای ضریب آسیب‌پذیری بالاست. بیشترین ضریب آسیب‌پذیری ۵/۱۴ در معابر ۲۵ متر (۴۱ درصد)، ۱۰ متر (۳۳ درصد) و ۵ متر (۳۲ درصد) بود.
بیانات برای معرض اصلی با راههای شبیه درجه ۲ تنفس دسترسی اصلی و کاربردهای تجاری و خدماتی، عمدتاً و راههای فرعی با نقش اجتماعی و کارکرد ساختگی بیشترین آسیب‌پذیری را دارند. این معرض در سرتاسر ناحیه توزیع شده‌اند، اما تمرکز بیشتری در ناحیه غربی ناحیه دارد. از این جایی که معرض با عرض بیشتر اغلب در معرض اندامد کمتر قرار دارد، این ویژگی در زمان لزوم‌خیزی بر ترافیکی معرض کم‌عرض را، که در معرض اندامد و آسیب‌پذیری بیشتر هستند، به معرض اصلی منتقل می‌کند. الگو شیوه‌نامه‌ی معرض و قوانین تفاوت‌ها با کنترل سرتخت و حركت وسایل نقلیه به افراشی حجم ترافیک و درنتیجه افراشی ضرب آسیب‌پذیری لزوم‌خیز معرض کم‌می‌کند.

نتایج گزیره

مشخصاتی آسیب‌پذیری لزوم‌خیز شبیهی معرض ناحیه وجود ۵۲ درصد معرض آسیب‌پذیری و ۲۰ درصد معرض با ضرب آسیب‌پذیری زیاد و خیلی زیاد است. الگوی توزیع فضایی آسیب‌پذیری شبیه روندی رئیسی از شرق به غرب و از شمال به جنوب دارد که کانون شدت فضایی آن در مرکز ناحیه واقع است. دلایل اصلی آسیب‌پذیری معرض تراکم ساختمانی پیال، افراشی سطح سرویس ترافیک، تراکم جمعیت و نظام ویژه کاربری زمین است. در معرض کم‌عرض (۸-۱۰/۶۸ تومان)
به طور مبتسد پیشتر ساختارهای ارتفاعی بیش از دو برابر عرض معمول مشترک به آن دارند و معمولاً واقع در شمال غرب و جنوب ناحیه (کوچه‌های مشهور به خیابان‌های فروغی، فلکه هماورد، بلوار عصر، شریعتی، اعتماد غربی، رازی، اودهی، مخابرات، عفر و زیرخان زند و بهره‌گی در برخی محصوره‌ها در جنوب و دیگر قرار دارند. فراوانی معماری کم عرض توأم با ضریب آسیب‌پذیری بالا (۲۳ درصد) ضریب مسودشدن آنها را افزایش می‌دهد و از این طریق نفوذپذیری و دسترسی به این معمار و سایر معمار شبکه را محدود می‌سازد. در خیابان‌های اصلی محصوره‌ها، عفر و رازی مصادف و محورهای اصلی این معمار ایستگاهی برخوردار بوده‌اند.

با توجه به نتایج پژوهش، پیشنهادهای زیر اولویت‌های اقدام برای برنامه‌ریزی لرزه‌ای و مدیریت اضطراری است:

- کاهش درجه محصوره‌نگری از طریق سیاست‌های محدودکننده ترافیک جمعی، و ساختارهای بنیادی که در دستورالعمل‌ها ذکر شده‌اند.
- عبور و عبور از مدار محصوره‌ها و مدار محصوره‌ها در مراکز محله‌ای و پایتخت می‌تواند معمار و شرایطی در پایداری اسباب‌پذیری بالا یابد. علاوه بر این، پایداری اسباب‌پذیری بالا یابد (29 درصد کاربردی)، 3 درصد اراضی بزرگ‌تر از جمله فرضی‌ها و طرفی‌ها در این زمینه است.
- تدوین و طراحی الگوی زارینی و بازتوسعی فضای عامل اصلی مولد ترافیک، به‌عنوان نظام کاربری زمین (کاربری‌های تجاری جاذب سفر) در بدن‌های محصوره‌ای و فراورده‌های که به‌این احتمال پارک‌گیری، اختصاص خودکاری خودروهای امدادی، کاهش گردش‌های ترافیکی اعمال محصوره‌های ترافیکی به‌صورت موضعی در کوتاه‌مدت همراه باشد.

ارتقاء کیفیت کالبدی بنیادی معمار با مقاوم‌سازی ساختارهای فرسوده (تعویض) و نوسازی بازگشتی

تخربی به‌ویژه ساختارهای که در هجوم‌های بازگشتی نوسازی قرار دارند. اطلاعات کیفیت‌های بازگشتی نشان می‌دهد، هر این چه‌گونه فقط ۳۵/۱٪ متر برفی با ۴/۷ درصد کل برفی شده‌است که در نقاط مختلف و مقاوم‌سازی ساختارهای با کاربری درمانی به‌ویژه بیمارستان‌ها از اولویت‌ها در کوتاه‌مدت است.

- علاوه برآن، الگوی نظر مکانی - قطعی از کاربری‌ها و خدمات امدادی (مرکز درمانی و بیمارستان‌ها، پایگاه‌های اورژانس و فریب‌های پزشکی، مرکز اشتهایی و خدمات امدادی) در پیشنهاد و نظر شما

دسترسی و الگوی هم‌جویی با رویکرد محدود‌های امن، باپتستی از وچه‌های اصلی نوسازی و بازگشتی شود.

- می‌باید بی‌بی‌هنه و ایندیتی فضاهایی کنند. تظاهرات به‌آسانی محدود و اراضی نواحی و

منطقه هم‌جویی که باید واحدهای شاخص‌های اصلی انتخاب کنند در منطقه‌های لرزه‌ای باشد.

1. Brown Field
مقاله

مقدمه‌سازی اعضا، 1376 مطالعات حمل و نقل و ترافیک در تهران، شیراز و بروجرد می‌باشد.

افزار آسیب‌پذیری شهری، تهران.

ابراهیمی، مهدی. 1371 «محاسبه و تعیین آسیب‌پذیری شهر تهران و نحوه برخورداری با عوارض آن»، اولین کنفرانس بین المللی و بزرگی در منطقه‌های سطحی، دفتر مطالعات و برنامه‌ریزی شهر تهران.

افزار، صد. 1364 نقش مهندسی بحران در روندی در ترافیک تجاوزی و آزادی‌سازی جویان ترافیکی آزادی‌سازی، پایان‌نامه کارشناسی ارشد، دانشگاه بین المللی امام حسن، قدس (عج).

امینی، اهلی؛ فرح حیدری و غلامحسین مجتهدزاده. 1369 «در پیام‌پردازی کاربری زمین و مدیریت بحران زمین‌زده»، مجله علمی، تولوزی، ۳، ۲۸-۳۴.

رقیب‌زاده، نعمت‌الله. ۱۳۸۸. آسیب‌پذیری ابزارهای حمل و نقل موردی شهر تهران، یوزه‌گاه بین المللی زلزله‌شناسی و مهندسی زلزله، تهران.

تری، کمال. ۱۳۸۸. بررسی نقش شبه‌کاتگری‌های ارتباطی در کاهش اثرات ناشی از زلزله، مورد مطالعه: منطقه آد، شهرداری تهران، با تأکید بر ناحیه ۱، پایان‌نامه کارشناسی ارشد، دانشگاه علم و صنعت ایران، تهران.

حیدری کومیت، حسین. ۱۳۷۸. تغییر عناصر ساختاری در اسباب‌پذیری؛ کمک‌های زمین‌زده با استفاده از GIS و Fuzzy Logic، نشر سپه، شیراز، ۳۶-۴۲.

حسینی، مهدی. ۱۳۸۱. «بهبود حمل و نقل تهران: چه حمل و نقل آماده است؟» مجموعه مقالات اولین سمینار ساخت، و سازار در پایتخت تهران، دانشگاه فنی دانشگاه تهران، تهران.

سرگزاری، رضوان‌الدین ملک‌زاده، مهندس ارتباطی و هم‌تراز اکبری. ۱۳۹۰. «آسیب‌پذیری اسباب‌پذیری معماری در برابر زلزله با استفاده از روش AHP، نمونه موردی: کلان‌شهر تهران»، اولین همایش ملی تحلیل فضاهای مکانیکی کلان‌شهر تهران.

دانشگاه علم و صنعت ایران، تهران.

شیمی، اسماعیل. کومیت حیدری و کمال تری. ۱۳۸۹. «آسیب‌پذیری اسباب‌پذیری شهری ارتباطی شهرها در مقابل زلزله با استفاده از GIS و HWP مدل‌ها و مطالعاتی موردی منطقه آد، تهران، دانشگاه شیراز.

شهرداری، علی‌اکبر و حسن رضایی‌نیا. ۱۳۸۱. «ارتباط و وضعیت آسیب‌پذیری شهرها» نامه از شبکه‌های شهری، نمونه موردی: شهر کرمان، کارشناس برنامه‌ریزی و مدیریت شهری، دانشگاه شیراز.
نشریه تحلیل فضایی مخاطرات محیطی، سال دوم، شماره 1، بهار 1394

علایی، مهدی. 1385. بررسی اثرات ناشی از تخریب ساختمان های بی از وقوع زلزله در معماری شهری، نمونه موردی: محله چهار منطقه. یک تهران، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی، تهران.

سعدی‌پور، مجید. 1381. مدیریت بهره ورزی در نظایری شهری، سازمان شهرداری کشور، تهران. عزمی، محمدعبده و میلاد همافر. 1391. آسیب‌شناسی ارزیابی منطقه شهر، مطالعه موردی: محله کارمندان کرج. تهیه نشریه هنرهای زیبا، 13-15.

غفوری اشتیاق، محسن. 1380. کاهش خطرپذیری لرزه‌ای شهر تهران، مرکز مطالعات مقاله با سوائل طبیعی ایران، تهران.

قیرانی، حسین. 1383. بررسی نارسایی‌های فلوس‌های طراحی در منطقه ویلی عصر تبریز، پایان‌نامه کارشناسی ارشد، سازمان مدیریت و برنامه‌ریزی، تبریز.

کرمی، امید. 1380. پیش‌بینی و برنامه‌ریزی کالبدی شبکه‌ی معماری شهری به‌منظور کاهش آسیبدپذیری در برابر زلزله، پایان‌نامه کارشناسی ارشد، دانشگاه علوم انسانی، دانشکده تربیت مدرس، تهران.

محمدرضا، حمید. 1389. فرضیه نقش فضایی‌های بار و شبکه‌ای ارتباطی در کاهش آسیب‌پذیری زلزله، مورد مطالعه: منطقه باغچه‌ی تبریز، فصلنامه سه، 10-12-111.

مرکز مطالعات مقاله با سوائل طبیعی ایران. 1373. بررسی بارز و طراحی شبکه‌ای ارتباطی شهر رشت با هدف کاهش آسیب‌پذیری ناشی از زلزله، بینی‌سک مسکن اقلیمی اسلامی، تهران.

معماری، نادر. 1380. بررسی بارز و آسیب‌پذیری ناشی از زمین‌لرزه، مطالعه موردی: شهر تبریز، پایان‌نامه کارشناسی ارشد، دانشکده علوم زمین و جغرافیا، دانشگاه شهید بهشتی، تهران.

موسی، سید فاطمه. 1384. تمهیدات شهرسازی به‌منظور کاهش آسیب‌پذیری شهر در برابر زلزله، نمونه مطالعه: شهر چالوس، پایان‌نامه کارشناسی ارشد، دانشگاه علوم و صنعت ایران، تهران.

مهدی‌نیاز، محمد جواد و کاپان جوانرودی. 1391. «بررسی آسیب‌پذیری ناشی از زلزله در شبکه‌های ارتباطی تهران بزرگ، مطالعه موردی: خیابان ولی عصر شمالي (میدان ولی عصر تا چهارراه پارک)، تشریح مدیریت بهرن، 1-13-11-21.

ناطق‌اللهی، فریبرز. 1374. "شناخت بحران و مدیریت آن"، مجموعه مقالات دومین کنفرانس بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران.

