بررسی سطح ایستابی آب زیرزمینی دشت اردبیل

چکیده

آب‌های زیرزمینی منبع بسیار مهمی برای امکان آب مصرفی در بخش‌های کشاورزی، صنعت و شرکت‌های اسفنجی‌سازی است. از این رو باید بررسی تغییرات منابع آب زیرزمینی در ناحیه‌های مناسب اهمیت فراوانی دارد. در این پژوهش، هدف سطح‌نی‌های قندی و وضعیت دهستان‌های موجود در دشت اردبیل بحلال انرژی بحران آب زیرزمینی و تغییرات آن طی سال‌های ۱۳۹۱ و ۱۳۹۲ است. بر اساس نتایج، از اطلاعات ۲۳ چاپ پیزومتری موجود در سطح دشت اردبیل (اخذشده از سازمان آب منطقه‌ای) استفاده شد. با استفاده از روش‌ات کمکی و روش‌ات به روش‌ات دسترسی ایستابی پیوسته و نحوه تغییرات سطح ایستابی آنها طی این دوره نمایش داده شدند. سپس نتایج تحلیلی که شامل نتایج سطح سطحی در سال ۱۳۹۲ و سال ۹۱ تهیه گردید. نتایج تحلیل، کاهش تقریباً ۴۷ درصدی سطح ایستابی را در سال ۱۳۹۲ نسبت به سال ۱۳۹۱ نشان می‌دهد. در نهایت با استفاده از اطلاعات دسترسی ایستابی پیوسته و نحوه تغییرات سطح آب زیرزمینی دشت اردبیل که قسمت شرق و جنوب شرق دشت را شامل می‌شود، همچنین، دهستان‌های شمالی دشت نیز به استحکام کردن مشابه دسته‌ها در این دوره نباید توجه به نتایج سطح کشت و تراکم چه اعیانی نخواهد کرد.

واژگان کلیدی: تصمیم‌گیری چند معایری فازی، آب زیرزمینی، سطح ایستابی، تحلیل فضایی، دشت اردبیل

Email: jjafar4631@gmail.com
مقدمه

آب زیرزمینی یکی از منابع مهم تأمین آب شرب برای بسیاری از مردم در سراسر جهان مخصصاً در مناطق روستایی است. با توجه به اهمیت و دسترسی ساده به منابع آب زیرزمینی (بخصوص در ناحیه‌های جنگ)، استحکام بودن برنامه‌ریزی این منابع سبب افزایش سطح ایستایی آب در سیستم‌های بزرگ منطقه‌ای شده است. با گونه‌های که آن اکنون در شرق این مکان کاملاً مشهود است (شمسی، 1399، سوپه و سیمرغ، 1393)، در شاراطی که برده‌داری نیروی آب زیرزمینی دشت اردبیل در سال‌های اخیر به سلسله مراتبی برند برخی دشتهای این استان افزایش یافته است. مدل‌سازی سطح آب زیرزمینی این دشت آماری مهم و ضروری است. دانشوری و توافق و دریاپوش (1390) در تحقیقاتی که این نتیجه را کنست نمی‌کند که این روند داشته باشد. سپس، در نهایت در تحقیقاتی که برده‌داری دیده نشده است در این دشت می‌توان نتیجه گیری کنیم که دشت این دشت اردبیل ناشی از خشکسالی یا کاهش بارش نیست. بلکه بعلت افزایش معمای درجه حرارت و نیاز آب گاهان همچنین برده‌داری نیروی آب از چاه‌های عمیق، نیمه‌عمیق و دشتی است که سبب کاهش تراز آب زیرزمینی در دشت شده است. شمسی، سوپه و سیمرغ (1394) در پژوهش‌های تحقیقاتی سطح ایستایی آب زیرزمینی دشت اردبیل را با استفاده از شبکه‌های عصبی مصنوعی بررسی کرده، استفاده از مدل‌های گوناگون درون‌یابی اساس کار سیستم از محاسبات برای بررسی وضعیت احتمالات زمینی و فاکتورهای زمینی این است درباره انتخاب بهترین حالت درون‌یابی بر روی وضعیت محاسباتی داده‌های متغیرهای دشت اردبیل از چهارهای زمین‌آماری استفاده کرده‌اند. Watsonand and Philip (1982) و سرناک‌ها از گونه‌های بیشتری در دسترسی سیستمی را به‌جست که هرچه این مقدار بیشتر باید، نشان‌دهنده کارایی بیشتر روش مورد نظر آبی (آریکه‌ای و همکاران، 1391)، رویکرد. Ramos، 2010، توسن و همکاران به مقایسه سه روش میانجی‌گری وزن‌دهی عکس فاصله، تولید پایه قُص، و افزایش قیفیت و کریچینگ2) برای پیش‌بینی تغییرات زمینی و مکانی عمق آب زیرزمینی در کویر میانین در شمال دشت باکhtiار (2009) مککا در ایالت کرادووی امریکا برای بالارسان دقت در تخمین و شیب‌سازی داده‌های مؤثر بر حیان آب زیرزمینی از روی‌های زمین‌آماری استفاده کرده‌اند (McKenna، 2002، .) صادق نیکی‌یزدی و معصومه دلبری (1394) با استفاده از روش‌های زمین‌آماری به‌آورد سطح ایستایی آب‌های زیرزمینی دشت زاهدان پرداختند. برتری و اکتشافاتی هر روش شدیداً به خصوصیات و مشخصات عضویات و مشخصات اکتشافاتی داده‌ها به‌گنگی دارد. میکا ماده کاری که به‌خبره با مجموعه‌های داده‌های مزارع داده می‌شود، بررسی آن بر مجموعه‌های دیگری نتایج ضعیفی داشته باشد. بنابراین، گروه‌های گروه‌های انتخاب مناسب‌ترین روش‌های پایین برای آن (Apaydin et al، 2004)، رابینسون و منیقی برای انتخاب پهنای رشته عکس فاصله، از چهارهای پایین داده‌ها و کمترین مقدار خطای استفاده کرده‌اند (Robinson and Metternicht، 2002). هدف از پژوهش حاضر تعمیم تغییرات سطح ایستایی آب زیرزمینی دشت اردبیل با استفاده از روتوخ‌های زمین‌آمار و تحلیل تصمیم‌گیری جنگ صعباده و بررسی ارتباط بین میزان برداشت آب زیرزمینی و وضعیت سطح ایستایی آن برای دهستان‌های سطح دشت اردبیل است. نتیجه‌ی این پژوهش صورت گرفته ترکیب مدل‌های مختلف دو روش و وزن‌دارکردن آنها با توجه به میزان دقت مدل‌ها و تهیه‌ی نشانی درون‌یابی به‌جهت استفاده از هر چند دلیل درون‌یابی است.

1. Sector type
2. Root-Mean-Square Error
3. Radial Basis Function
4. Kriging
دشت اردبیل در ناحیه شمال غرب ایران بین عرض شمالی ۲۸ درجه و ۵ دقیقه تا ۲۸ درجه و ۳۰ دقیقه و طول شرکی ۴۸ درجه و ۱۵ دقیقه و ۲۵ دقیقه واقع شده است. محدوده از نظر تقسیم کشوری به استان اردبیل تعلق دارد (شکل ۱). ارتفاع متوسط اراضی کشاورزی حدود ۱۳۶۰ متر از سطح دریاهمیشه است. وسعت آن حدود ۸۲۰ کیلومتر مربع است و جنگل‌های آسیایی رود فرسو به‌شمار می‌روند. دشت اردبیل متشکل از ۸۸ واحد روستایی، ده واحد دهستان و ۳ واحد شهری (اردبیل و آبی بیگلو) است. شهر اردبیل مرکز استان اردبیل در غرب استان واقع شده است. در محدوده دشت اردبیل تعداد ۲۴۴۳ حلقه چاه عمیق و نیمه‌عمیق، ۲۰ دهنه‌چشمه و ۱۸ رشته‌قنات وجود دارد که به مصارف کشاورزی اختصاص دارند. از سال ۱۳۵۰، برداشت آموز سطح ایستایی دشت اردبیل با ۱۱ استان‌پزشکی در محدوده دشت شروع شد و در سال‌های اخیر به ۵۴ حلقه چاه رسید. این امر خوشبختی‌های پرورشی مناسبی دارد. اما به‌جهت اینکه دشت کافی در برداشت با اثراتی آمار مناسب و سالانه از تراز سطح ایستایی چاه‌های موجود صورت نمی‌گیرد، عملی فقط داده‌ها و اطلاعات صاحب صاحب شده است.

شکل ۱: موقعیت دشت اردبیل در سطح استان اردبیل.

برای انجام این تحقیق، از داده‌های آماری مربوط به چاه‌های پیژومتری استفاده گردید که در سطح دشت اردبیل پراکنده شده‌اند. داده‌ها از طریق سازمان آب منطقه‌ای شهرستان اردبیل جمع‌آوری شد. همچنین از لایه‌های سطحی و نقطه‌ای مربوط به دشت اردبیل و تکنیک‌های شیمیایی و میکروبی سطح زیرکست مرده‌های ترکیبی دهستان و نیز موقعیت چاه‌های پیژومتری برای تهیه نمونه‌های نهایی استفاده گردید.

مراحل انجام تحقیق در شکل شماره ۲ آورده شده است. اولین گام برای بررسی هر فرآیند هیدروژنیک جمع‌آوری داده‌ها و اطلاعات مورد نیاز است. از قبل موقعیت مکانی چاه‌های مشاهده‌ای و مختصات آن‌ها. برای این منظور اطلاعات منابع آب زیرزمینی مربوط به سال‌های ۶۰ و ۹۱ تهیه گردید و در پژوهش حاضر استفاده شد که ملاک عمل و برنامه‌ریزی داده‌های
بررسی سطح ایستایی آب

بررسی از مدیریت منابع آب شهرستان اردبیل است. پس از بررسی آمار و انتخاب داده‌هایی که برای تمام جاهای انتخابی کامل و موجود بودند، برداشت‌های ماهیانه یا ماهه‌ای پیژشی موجود در محدوده‌ی دشت اردبیل برای سال‌های آماری ۶۰ و ۹۱ و تغییرات سطح ایستایی تعداد ۳۹ چاه پیژش‌یاری شد. سپس، متوسط سالیانه برای هر چاه پیژش‌یاری داخل در محدوده و پیرامون آن وارد محیط ترمیمی ArcGIS گردید.

شکل ۲: نمودار مراحل انجام کار

Magnus and Clyde، ۱۹۸۴. (فهرستی نالی و بابایی، ۱۳۸۴، ۹۹) Farghi و عزیزی، ۱۳۸۵، ۱۹۸۵. (Johnston et all، ۲۰۰۱). LPI، RBF (Yan، ۲۰۰۹) و GPI، ۲۰۱۰. (Johnston et all، ۲۰۰۱) (IDW، ۲۰۰۱).
شرح و تفسیر نتایج

اشکال شماره ۳ تا ۱۰ نقشه‌های درونیابی شده با استفاده از نرم‌افزار Ra برای دشت اردبیل با استفاده از مدل‌های ارائه شده و برای دو سال حاصل ۹۰ و ۶۰ نشان می‌دهد. هر یک از این اشکال با استفاده از چهار روش درونیابی که در روش کار توضیح داده شد، انجام شده و هم چنان برای هر دو سال آبی ۹۰ و ۶۰ این چهار روش به کار برده شده است.

شکل ۳: نقشه‌های فازی به روش BRAY Sال آبی ۱۳۶۰

شکل ۴: نقشه‌های فازی به روش IDW برای سال آبی ۱۳۶۰

مقدمه‌ای پهپادی از (RMSE) (Srivastava and Isaaks, 2002) به ما از طریق تخمین‌دهشده و واحد متغیر در نقطه X_i مقدار تخمین‌دهشده و واحد متغیر Z(X_i) و Z(X_i) در این معادله، (1)

\[\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Z(X_i) - Z(X_i))^2} \]

در این معادله، (1) بسیار ممکن جذر میانگین مربعات خطا که معادل با برای سنگین دقت روش‌های درون‌پایی است. رتبه‌بندی میانگین و وزن‌دهی به‌روش‌های گفت‌شده صورت گرفت. سرانجام، با استفاده از روش وزن‌دهی جمعی سادة (پرده‌گار و غفاری ۱۳۹۰: ۲۱۲) اصلاح شد، این روش دارای درجه اطمینان افت سطح ایستا (Srivastava and Isaaks, 2002) باشد. دارای بیشترین رتبه است. مفاد این کلی روش می‌باشد که دارای کمترین میزان RMSE باشد، دارای بیشترین رتبه است. مفاد این کلی روش می‌باشد که دارای کمترین میزان RMSE باشد، دارای بیشترین رتبه است.

در این محدوده، در محیط نرم‌افزار ArcGIS می‌باشد که دارای کمترین میزان RMSE باشد، دارای بیشترین رتبه است.

Radial Basis Functions

DOI: 10.18869/acadpub.jsaeh.2.1.31
بررسی سطح ایستایی آب

ضکل 5: نتایج تفسیری فازی به روش RBF برای سال آیی 1360.

ضکل 9: نتایج تفسیری فازی به روش LPI برای سال آیی 1390.

ضکل 10: نتایج تفسیری فازی به روش RBF برای سال آیی 1390.
در جدول شماره ١ انواع مدلهای به کار رفته برای درون‌بایی به همراه مدل سی واریوگرام و توان‌های پهن‌شده و نیز مقادیر خطای RMS و میزان پیش‌بینی و کمیته هر مدل آورده شده است. از مقادیر پیش‌بینی برای به‌دست‌آوردن لایه استاندارد فاصله استفاده شده است. در جدول شماره ٢، ۳ مشخصات چاه‌های پیزومتری به همراه میزان سطح ایستابی آن‌ها برای سال‌های ۱۳۶۰ و ۱۳۹۰ آورده شده است.

جدول ۱: نوع مدل به کار رفته برای درون‌بایی به همراه میزان پیش‌بینی آن

<table>
<thead>
<tr>
<th>مدل به کار رفته برای درون‌بایی</th>
<th>پهن‌شده</th>
<th>مدل سی واریوگرام</th>
<th>RMS</th>
<th>توان</th>
<th>پیش‌بینی</th>
<th>منطقه استاندارد</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDW</td>
<td>0/10</td>
<td>1360</td>
<td>2/95</td>
<td>1/5</td>
<td>0/35</td>
<td>34584</td>
</tr>
<tr>
<td>GPI</td>
<td>0/10</td>
<td>1360</td>
<td>2/95</td>
<td>1/5</td>
<td>0/35</td>
<td>34584</td>
</tr>
<tr>
<td>RBF</td>
<td>0/10</td>
<td>1360</td>
<td>2/95</td>
<td>1/5</td>
<td>0/35</td>
<td>34584</td>
</tr>
<tr>
<td>LPI</td>
<td>0/10</td>
<td>1360</td>
<td>2/95</td>
<td>1/5</td>
<td>0/35</td>
<td>34584</td>
</tr>
</tbody>
</table>

جدول ۲: مشخصات چاه‌های پیزومتری به همراه میزان سطح ایستابی (متر) برای سال‌های ۱۳۶۰ و ۱۳۹۰

<table>
<thead>
<tr>
<th>نام چاه پیزومتری</th>
<th>سطح ایستابی (متر)</th>
<th>خرید</th>
<th>صنعتی</th>
<th>علمی</th>
<th>تخصصی</th>
<th>غیر-صنعتی</th>
<th>اقتصادي</th>
<th>منطقه</th>
<th>تاریخ ورود</th>
<th>تاریخ خروج</th>
<th>تاریخ شروع</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسیرا</td>
<td>۶/۳۴</td>
<td>۶/۳۴</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
</tr>
<tr>
<td>شریعت</td>
<td>۷/۹۲</td>
<td>۷/۹۲</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
<td>۲/۸۵</td>
</tr>
<tr>
<td>تبرک</td>
<td>۲/۸۵</td>
</tr>
<tr>
<td>تبرک</td>
<td>۲/۸۵</td>
</tr>
<tr>
<td>تبرک</td>
<td>۲/۸۵</td>
</tr>
</tbody>
</table>
هم چنین در شکل شماره ی 11 و شکل شماره ی 12 هم چنان که در روش کار توضیح داده شد، تمامی لاشه های درونیابی شده و وزن دار شده با استفاده از مدل وزن دهی جمع ساده تلقیح شده و نقشه نهایی برای سال آبی 1360 (شکل 11) و سال آبی 1390 (شکل 12) تهیه شد. همانطور که از شکل های درونیابی شده مشخص است، افزایش مساحت سطوح مختلف کلاس های ارتقاء ارائه شده از سال 60 به سال 90 گاز افزایش افت و در دشت خصوصاً در قسمت شرق و جنوب شرق دشت اردبیل است. همچنین، با توجه به دو شکل 11 و 12، گسترش ناحیه مشخص شده به رنگ قرمز در شکل 12 از شکل 11 گاز افزایش منطقه ای افت سطح ایستایی در این دوره ای آماری است.

شکل 11: نقشه نهایی افت سطح ایستایی برای سال آبی 1360.

شکل 12: نقشه نهایی افت سطح ایستایی برای سال آبی 1390.
شکل شماره 13 با توجه به جدول شماره 12 تغییرات میانگین سطح ایستایی چاههای پیزومتری دشت را در سال‌های 60 و 91 به وضوح نشان می‌دهد. میانگین افت سطح ایستایی برای دو دوره‌ی آماری 834 متر است که در شکل شماره 13 می‌توان افت سطح ایستایی آب زیرزمینی دشت اردبیل را بین دو دوره‌ی آماری مشاهده کرد.

شکل 13: تغییرات میانگین سطح ایستایی چاههای پیزومتری دشت اردبیل.

در ادامه اشکال شماره 14 و 15 اردوه شده است. در شکل شماره 14 وضعیت سطح زیر کشت محصولات در محدوده دشت و هم‌چنین موقعیت چاه‌های عمیق در این محدوده نشان داده شده است.

شکل 14: موقعیت چاه‌های عمیق و سطح زیر کشت محصولات آبی.
همانطور که در توضیحات شکل شماره ۱۴ گفته بود، این شکل مجموع سطح زیر کشت محصولات گندم، جو، سیبزمینی و علفه را برای دهستان‌های اردبیل نشان می‌دهد. همچنین، در این شکل، چاه‌های عمیق موجود در سطح دشت اردبیل به نمایش در آمده است. مطالعه این شکل، ملاحظه می‌گردد که بیشترین تراکم چاه عمیق به‌ترتیب در فولادولو شمالي، ویلیکی مرکزی و شرقی است. علاوه بر این، بیشترین میزان سطح زیر کشت مربوط به این سه دهستان است. به تبع ووجود این عوامل، میزان برداشت از آب زیرزمینی نیز به‌شدت بالا می‌رود که خود یکی از عوامل سیاس مهم دخیل در وحشت اوضاع این قسمت از آبخوان دشت است. نقشه‌های نهایی میزان افت سطح ایستایی دشت اردبیل با استفاده از اعمال روش‌های مختلف درون‌پایی و نیز رتبه‌بندی و وزن‌دهی، پس از کسرکردن و استاندارد و فاز کردن دو نقشه سطح ایستایی سال ۱۸۷۰ و ۹۰ بوده‌است (شکل ۱۵)، با توجه به شکل شماره ۱۵ به‌خوبی می‌توان میزان افت و محل افت شدید را در سطح ایستایی آب‌زیستی مدار مشاهده کرد. مطابق با شکل شماره ۱۵ نیز در این مورد که وضعیت دهستان فولادولو شمالي و ویلیکی مرکزی در حال حباددارند و دهستان شرقی نیز در آن‌ها نزدیک به سمت بحران بیش می‌روند. مطابق با شکل شماره ۱۵ بیشترین افت سطح ایستایی مربوط به دهستان فولادولو شمالي است.
نتیجه‌گیری

نتایج تحلیل، کاهش تقریباً 45 درصدی سطح استانی را در سال 1391 نسبت به سال 1360 نشان می‌دهد. همان‌طور که شکل‌های 13 و 14 نشان می‌دهد، بیشترین سطح استانی جاده‌ای پیژوری در 45 متری در سال 1360 به بیش از 7 متر در سال 1390 رسید که حاصل از واحدهای آبی در قطعات نسبی داده است. سرانجام با استفاده از اطلاعات به‌دست آمده، برای چگونگی گسترش فعالیت‌های بیشتری تغییرات را به‌منظور فشرده‌سازی و بالا‌بردن سطح زیر کشت محصولات پیش‌بینی می‌شود. در حالی که دسته‌ها، ویلکیک مرکزی، و فولادولوی شمالی بیشترین تغییرات را به‌منظور فشرده‌سازی و بالا‌بردن سطح زیر کشت محصولات پیش‌بینی می‌شود، در این مورد دسته‌ها و شرایط کشاورزی و بالا‌بردن سطح زیر کشت محصولات با نیاز بیشتری و تراکم چاه‌های عمدی حفرشده، برداشت از آب زیرزمینی فراوان است. این نتایج معنایی‌داری داشته‌اند. این نتایج بیانگر این است که دسته‌ها و شرایط کشاورزی و بالا‌بردن سطح زیر کشت محصولات با نیاز بیشتری و تراکم چاه‌های عمدی حفرشده، برداشت از آب زیرزمینی فراوان است.

منابع

اصغری‌پور، محمدجواد. 1392. تصمیم‌گیری‌های جنده‌مرگ. انتشارات دانشگاه تهران، تهران، ج. 11.

حسین هاشمی، سید محمد حسینی و جلال‌الملکی. 1385. ارزیابی دقت و صحت روش‌های درون‌پایی در تخمین ارت. خان با استفاده از GIS. سومین همایش سیستم‌های اطلاعات مکانی، قشم. دانشور و توپری، فرانس و بهبودی دین بنه. 1390. خشکسالی و تأثیر آن بر روند تغییرات سطح آب‌های زیرزمینی در سطح آب‌های زیرزمینی دشت اردبیل در دو دهه اخیر. تشخیص کیفیت ملی مهندسی عمران. سمنان. دانشگاه سمنان.

شمسی سوسباب، رضا و محمدتقی سناری. 1393. تخمین سطح آب زیرزمینی دشت اردبیل با استفاده از شیب‌های عصبی مصنوعی. پنجمین کنفرانس دانشجویان عمران انجمن علمی دانشجویان عمران دانشگاه ارومیه. غفاری حسینی؛ علی رسول زاده؛ مجید رفیق و ابراهیم اسلامی‌نوری. 1392. بررسی تغییرات کمی آب‌های زیرزمینی آبیاری دشت اردبیل طی ده سال ابی دوره‌ی آماری (1380–1390)، دوی‌مند کنگره ملی کشاورزی ارزگانیک، دانشگاه محقق اردبیلی.

غفاری حسینی؛ علی رسول زاده؛ مجید رفیق و ابراهیم اسلامی‌نوری. 1392. بررسی روش‌های مختلف درون‌پایی در تهیه نقشه‌های چهار دشت آب‌های زیرزمینی با استفاده از ArcGIS و محیط زیست فارا، همدان.

عباسي، مصطفی؛ ایوب‌قلی زمان‌آباد و ایوب‌قلی زمان‌آباد؛ مهندی مفتناح هیلی و موسي حسام. 1388. مفتوح‌های ملی مهندسی و رشته‌های مدیریت آن، اصفهان.

عباسي، مصطفی؛ ایوب‌قلی زمان‌آباد و ایوب‌قلی زمان‌آباد. 1390. بررسی الگوی گسترش مکانی باشر در سطح استان گلستان با استفاده از مدل‌های قطعی و زیست‌آمیز. تشریح آب و خاک. 1. 53-64.
ترسیم سطح ایستایی آب

در برنامه‌ریزی شهروی، روستایی و مجزی این جاب و رفت انتشارات آزاد بی‌پروازی برجا می‌گیرد.

فرچی سیکیار، جنسعلی و قاسم عزیزی. ۱۳۸۵. ارزیابی میزان دقت روش‌های درون‌بایی فضایی مطالعه‌ی موردی: الگوسازی بارندگی خوزوئی کاردهی مشهد. پژوهش‌های جغرافیایی، ۱۵: ۵۱-۱۵.

سیاهی، فاضل؛ سید یاسر حکیم دوست و یاد الله بیاتی. ۱۳۹۱. راهنمای جامع مدارهای کاربردی GIS پرورش‌های جغرافیایی به‌عنوان یک روش انتقالی ناشناخته و عملکردی در حوزه خاکی.

Siska, P. and I-Kuai Hung. ۲۰۰۲. Assessment of kriging Accuracy in the GISEnvironment.

Yan, Xin. ۲۰۰۴. Linear regression analysis: theory and computing. Published by World Scientific Publishing Co. Pte. Ltd.

Environmental Modelling and Software, ۲۰: ۱۱۵۳-۱۱۷۰.