بررسی آشفتگی در الگوی خطر سیلاب در تهران

منبعه قهرده تالی، دانشیار زئومورفولوژی، دانشگاه بهشتی تهران

خیابان درشتی دانشجو دکتری زئومورفولوژی، دانشگاه شهید بهشتی تهران

دریافت مقاله: 14/10/93

پذیرش نهایی: 94/02/23

چکیده

سیلاب اگرچه خود مخاطرات محض می‌شود، بی‌نظر مسترکاری در کوه‌های آن رخ می‌دهد که حاکی از تغییر محیط‌شناسی است. بی‌نظری‌های فکری سیلابی که شاهدی بر کیاسی یا آشوبی در سیستم رخداد آن است از طریق هندسه‌ای تقویت‌کننده قابل قبول مطالعه است. حوادث رخ داده در تغییرات مکانی سیلاب نشان می‌دهد که تغییرات در الگوی سیلاب جایگزینی است. در این پژوهش، بر مبنای داده‌های 27 دی آبان 2009-98 و با مدل گردش‌گر ناک و دیگر، میزان بارش شهر تهران تهیه گردید. به روش SCS (CN) برای کاربردهای گوناگون شهر تهران، میزان شماره‌ی مخرب و روان آب محاسبه شد. با استفاده از معرفی‌های طبیعی شهر، شبکه‌های ارتباطی، کاربری اراضی شهری، سازه‌های شهری، توزیع تراکم جمعیتی و شرایط ارتقاء و مدل سلسله‌مراتبی نشانی پتانسیل خطر سیلاب در پنج رده خطر خطر در تهران تهیه شد. همچنین، برای بررسی آشفتگی در الگوی سیلاب در تهران از دو مدل فرکتال محیط‌شناس و تعداد افراد حاضر در 12 حوزه نمونه و در رده‌های آسیب‌پذیری استفاده گردید. با استفاده از عدد یک بینانگر آشفتگی کیاس با بین‌نظری در الگوی خطر سیلاب شهر تهران است و این آشفتگی از رده خطر خیلی کم به سمت رده خطر خیلی زیاد افزایش می‌یابد. بنابراین، آشفتگی آشفتگی هرم‌پنهان با بزرگ شدن مخاطرات سیلاب بین‌گر این است که امکان پیش‌بینی نحوه گسترش سیلاب و تعیین مناطق در معرض خطر فراهم نمی‌کند.

واژگان کلیدی: تهران، سیلاب، آشفتگی، مدل.

Email: m-ghahroudi@sbu.ac.ir

1. نویسنده مسئول:
بررسی آشفتگی در الگوی خطر

مقدمه

در طبیعت و فراپیدهای حاکم بر آن نظام و کیاس (آشوب) مشهور است. پیده‌های طبیعی در حالت معمول نوعی نظم دارند. چنین چه به دلیل شرایط عادی به هم خورید، بی‌نظمی و آشوب رخ دهد. سیستم‌های ماخترال‌های است طبیعی که از الگوهای خاصی پروری می‌کنند، الگوهایی که بیانگر هم‌ریتم و ترکیب عوامل داخل‌دریم است. رخداد کیاس در مخاطرات طبیعی و انسانی به‌ویژه در زمینه‌های مختلف از آن‌ها عبارتند از: عادات غذایی و نحوه سلامت‌داری افراد.

در سال ۱۳۸۴، مظفر درمانی رئوس‌اللهی، وین‌کیک، و لیستر به این نظر رفت که پژوهشگران باین هدایتی نیاز جلب کردند. این نظر رفت به طوری که در عرصه‌های مخاطرات طبیعی را به‌ویژه این نظر هدایتی ملک هکم. در طریف، رفتار فیزیکی بازی‌ها از آن‌های طبیعی نیز به‌ویژه گرایی از روانی‌های فردکالی و سایر تفاوت‌ها و تغییرات در جامعه سیلاب‌ها پیش‌بینی گردیده است (Malamud et al, 1986). به طوری که اجتماع اولتیمیت و فضاهایی که در نظر گرفته‌اند. این نظر رفت به این نظر که بنردهایی که از طبیعت و فراپیدهای بی‌نظمی بوسیله یک مجموعه از اشکال‌های اجتماعی و فرهنگی نتیجه‌ی پیش‌گویی بررسی‌های آماره‌ای است. (Cheng, 1994:268)
نتیجه‌گیری اصلی مدار جنوبی - شکاف 1 برای بررسی هندسه‌ای مناطق اپری و برای مشخص کردن درجه‌بندی

یکی از اصول اصلی استفاده شد (Lovejoy, 1982) که برای دریافت‌کنندگی سطوح شکستگی روی قطعات فلز

به کار رفت (Mandelbrot et al., 1984). با وجود این، این مدل گاهی در آزمایش‌های مشابه نتایج منتفی ارائه داده

فکتیکال با میانگین فکتیکال (P) و محیط فکتیکال (R) معرف شد. این مدل عمومی برای جدا کردن انواع‌های

زتوشیمایی از زمینه به مشخص کردن توزیع اثر ناحیه در سطوح کلی و با الگوهای جدید از آن با کاربرد

نمونه‌ها از کیاس (آشوب) نیز در دو درجه روده‌های هنگی و طالبی‌های مربوط به این نواحی

شدته است (رامبدی، 1392). همچنین، الگوی فکتیکال در پلاک‌های حوض سلطان و گلوکوئین مطالعه شده که

نتیجه‌گیری در میکرووندفول های موجود در تالاب‌ها به‌طور گسترده‌ای به آن می‌باشد و سپسیک زایی حاضر و

گذر از نه که

یکی از اصلی ایجاد و کار در سطح نورنیازی دارد. علت مهم

سیل در شهر تهران توسعه‌ی فیزیکی آن را افزایش می‌دهد. 200 متری، شیب تن‌منتقل شمای تهران، اکثریت از

700 متر بین شمال و جنوب تهران، ساخت و سازه‌های وسیع و جدید بوده و وضعیت اکوسیستم، که دارای

خاک، ناکارآمدی، مشکلی فضایی و ساختار‌های در حیز مسیلی و رودخانه‌هاست، به طوری که میزان

بشار در تولید سیلاب تهران کاهش یافته است (Gahroudi and Nezammahalleh، 2013). در تهران،

پارسی چند سیل به وقوع پیوسته در تهران و توجه به میزان بارش در این سیل‌ها نشان می‌دهد که

سیل در تهران با استانداردی بارش حدود 35 تا 40 میلی‌متر ایجاد نیز دارد. برای مثال، سیل روز چهارم فوروردین

1341 با 22 میلی‌متر بارش، سیل روز 13265 با 23 میلی‌متر بارش، سیل روز دهم اسفند

1346 در منطقه شمیران سیلاب تهران با میزان بارش 44 میلی‌متر رخ داده است. همچنین، سیلی سهم‌گذاری روز یکشنبه چهارم

مرداد 1346 (در ساعت 10:20 تا 13:20) در منطقه شمیران تهران اتفاق افتاد که صدها تن گلوله و

سگن را در مسیر رودخانه گلدندره و جفراباد به سمت یکی از میزان‌های اصلی شهر (میزان تبریز) تخلیه کرد

و در روز 23 فوروردین 1391 سیل در خط 4 متر تهران سیل خشکی سبک بوده و خطوط متری شد (مرکز مدیریت

اطلاعات و حوادث). حوادث رخ داده در تغییرات مکانی سیلاب‌ها در 50 سال ناشنده می‌دهد که تحولاتی در

تهار در حالت وقوع است که می‌تواند سیلاب‌های شهری متغیری از آنچه به طور برون‌ریزی رخ می‌دهد شد که

نتایج آن بیشترین پیش‌بینی ناشنا. در این مقاله به منظور بررسی کیاس و اشکالی در نگاه سیلاب در تهران از دو مدل

فرکتیکال می‌خی‌س مراحت و تعداد مشاهدات استفاده گردید.
بررسی آشفتگی در الگوی خطر

دده ها و روش کار

بر مبنای داده‌های ۲۷ استحکام هوایی در دوره‌ی آماری ۱۰ ساله (۱۹۹۸-۲۰۰۹) و با ارزیابی روش‌های گوناگون درون‌پایی با مدل کریجینگ تابع گوس، لاشهی میزان بازه شهر تهران تهیه گردید. جدول شماره‌ی ۱ استفاده‌ی استفاده و جدول شماره‌ی ۲ معیارهای آماری بررسی عملکرد و دقیقت مدل‌های استفاده را نشان می‌دهد. در مدل انتخابی متوسط خطای ۱ درون‌پایی تندیک صفر، ریشه متوسط مجزور خطای (RMS) در حداکثر و همچنین ریشه میانگین مربع خطای استاندارد (SD) نزدیک به یک برآورد شد. با توجه به دستورالعمل آژانس ملی مدیریت اضطراری (۲۰۰۵)، برای محدوده‌های پرز و با آمار هیدرومتری کم مناسب است. از این رو، با استفاده از بارش و بر اساس شماره‌ی منحنی (CN) تعبین شده برای کاربری‌های گوناگون شهر تهران، میزان روان‌اب با معادلات شماره‌ی ۱ و ۲ محاسبه شد. برای کاربری‌های گوناگون شهر تهران مقدار شماره‌ی منحنی روان‌اب برای تولید طبق جدول شماره‌ی ۳ برآورد گردید (۱۹۸۶ USDA NRCS، (۱۳۸۵ فروردین). با توجه به جدول شماره‌ی ۳، ۴۰ ترین (عدد ۷۰) برای کاربری‌های اصلی شهر و بیشترین میزان آن (عدد ۹۸) مربوط به خیابان‌های آسفالت است. مقدار

۱. Mean Error
۲. Root Mean Square Error
۳. Root Mean Square Standardized
۴. National Emergency Management Agency
۵. The Soil Conservation Service Curve Number (SCS-CN)
ذخیره‌سازی سطحی خاک (\(S\)) با رابطه‌ی شماره \(2\) به دست آمده در معادلات اخیر، محاسبات در سیستم متغیر و میزان \(S\) نیز به سانتی‌متر تعریف شده است.

\[
Q = \frac{(P - 0.25S)^2}{P} + 0.8S \\
S = \left(\frac{2540}{CN}\right) - 25.4
\]

رابطه 1:

رابطه 2:

جدول 1. میانگین بارش سالانه ابسته‌های هوشمند

<table>
<thead>
<tr>
<th>استیاق</th>
<th>طول جغرافیایی</th>
<th>عرض جغرافیایی</th>
<th>میان‌بردارش سالانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>بابلی</td>
<td>51.88</td>
<td>35.70</td>
<td>435.05</td>
</tr>
<tr>
<td>چیتکر</td>
<td>51.13</td>
<td>35.70</td>
<td>438.88</td>
</tr>
<tr>
<td>دوشان نیه</td>
<td>51.23</td>
<td>35.92</td>
<td>389.42</td>
</tr>
<tr>
<td>خیبرک</td>
<td>52.93</td>
<td>25.69</td>
<td>392.75</td>
</tr>
<tr>
<td>زلویزیک</td>
<td>52.76</td>
<td>35.92</td>
<td>399.65</td>
</tr>
<tr>
<td>کرج</td>
<td>51.95</td>
<td>35.92</td>
<td>391.75</td>
</tr>
<tr>
<td>شمال تهران</td>
<td>51.64</td>
<td>35.88</td>
<td>348.46</td>
</tr>
<tr>
<td>مهرآباد</td>
<td>51.32</td>
<td>35.88</td>
<td>340.25</td>
</tr>
<tr>
<td>خیبرک</td>
<td>52.93</td>
<td>35.92</td>
<td>441.55</td>
</tr>
<tr>
<td>همدان - ابرد</td>
<td>52.05</td>
<td>35.87</td>
<td>336.85</td>
</tr>
<tr>
<td>مردان</td>
<td>51.52</td>
<td>35.87</td>
<td>336.85</td>
</tr>
<tr>
<td>اشتبار</td>
<td>50.77</td>
<td>35.87</td>
<td>344.91</td>
</tr>
<tr>
<td>اسلیانک</td>
<td>51.75</td>
<td>35.75</td>
<td>344.91</td>
</tr>
<tr>
<td>قلعه هسن خان</td>
<td>51.12</td>
<td>35.67</td>
<td>314.34</td>
</tr>
<tr>
<td>قرچ خار</td>
<td>50.78</td>
<td>35.67</td>
<td>314.34</td>
</tr>
<tr>
<td>هشتکر</td>
<td>50.87</td>
<td>35.67</td>
<td>314.34</td>
</tr>
<tr>
<td>جاوه</td>
<td>52.25</td>
<td>35.67</td>
<td>314.34</td>
</tr>
<tr>
<td>جنوبان</td>
<td>50.78</td>
<td>35.67</td>
<td>314.34</td>
</tr>
<tr>
<td>یانکر</td>
<td>51.12</td>
<td>35.55</td>
<td>587.74</td>
</tr>
<tr>
<td>یکانکر</td>
<td>51.12</td>
<td>35.55</td>
<td>587.74</td>
</tr>
<tr>
<td>پیلاشگاه</td>
<td>51.12</td>
<td>35.45</td>
<td>543.87</td>
</tr>
<tr>
<td>پیشوا</td>
<td>51.78</td>
<td>35.45</td>
<td>543.87</td>
</tr>
<tr>
<td>شمال غرب تهران</td>
<td>51.47</td>
<td>35.35</td>
<td>515.67</td>
</tr>
<tr>
<td>سیاسان</td>
<td>51.13</td>
<td>35.35</td>
<td>515.67</td>
</tr>
<tr>
<td>سیستان دشت</td>
<td>52.48</td>
<td>35.35</td>
<td>515.67</td>
</tr>
<tr>
<td>خاک‌های</td>
<td>50.73</td>
<td>35.35</td>
<td>515.67</td>
</tr>
<tr>
<td>سیلا وان</td>
<td>52.48</td>
<td>35.35</td>
<td>515.67</td>
</tr>
<tr>
<td>صوبه‌ی کرمان</td>
<td>50.83</td>
<td>35.95</td>
<td>594.59</td>
</tr>
</tbody>
</table>
بررسی آشفتگی در الگوی خطر

جدول ۲: معیارهای آماری بررسی عملکرد و دقت مدل‌های استفاده شده در میان‌بایی

<table>
<thead>
<tr>
<th>متد</th>
<th>IDW*</th>
<th>دانه‌ای</th>
<th>کره‌ای</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>-۸۵۳۴</td>
<td>۱-۸۳</td>
<td>۲-۵۹۳</td>
<td>۱-۸۱۳</td>
</tr>
<tr>
<td>میان‌مربع مربع</td>
<td>۱۵۴۸</td>
<td>۱۱۹۵</td>
<td>۱۱۸۵</td>
<td>۱۱۷۵</td>
</tr>
<tr>
<td>میانگین میانگین</td>
<td>-</td>
<td>-</td>
<td>۱۱۰۵</td>
<td>۱۱۰۵</td>
</tr>
<tr>
<td>میان‌مربع میانگین</td>
<td>-</td>
<td>-</td>
<td>۱۰۰۰۱۶۶</td>
<td>۱۰۰۰۱۶۶</td>
</tr>
<tr>
<td>میان‌مربع میانگین استاندارد</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول ۳: مقادیر شمارهی منحني برای کاربری‌های گوناگون کلان شهر تهران

<table>
<thead>
<tr>
<th>شمارهی منحني</th>
<th>کاربری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۷۰</td>
<td>فضای سیز</td>
</tr>
<tr>
<td>۰۲۸</td>
<td>بی ای</td>
</tr>
<tr>
<td>۰۵۶</td>
<td>علماهی</td>
</tr>
<tr>
<td>۰۸۸</td>
<td>صنعتی</td>
</tr>
<tr>
<td>۰۱۶</td>
<td>تجاری</td>
</tr>
<tr>
<td>۰۳۳</td>
<td>تأسیس‌کننده</td>
</tr>
<tr>
<td>۰۹۵</td>
<td>مسکن‌های</td>
</tr>
<tr>
<td>۰۶۷</td>
<td>جمل و نقل و قطار</td>
</tr>
<tr>
<td>۰۹۸</td>
<td>خیابان</td>
</tr>
</tbody>
</table>

افزاری حجم روان‌آب و سیلاب، کاهش زمان تمرکز، افزایش دبی هدایت احتمالی و تغییر کیفیت سیلاب
ننچه گسترش شهر در حوضه‌های آبریز بالادست و افزایش سطوح نفوذ‌آوری است، به طوری که شهرسازی میانگین روان‌آب را از ۲ تا ۱۰ درصد به قدری می‌نماید که باعث آن گسترش سیلاب‌های شهری است.
بنا بر این، برای تعیین شاخص‌های مؤثر بر سیلاب شهری تهران، از روابط گوناگون میان‌بایی و میزان تأثیر گذاری آن‌ها استفاده گردید. شبکه‌های ارباطی و سطح زیربنای مسکونی در بخش‌های گوناگون شهر تهران سطوح نفوذ‌آوری شهری در نظر گرفته شد. سطح زیربنای مسکونی شامل بخش ساخته‌شده در واحد مسکونی در مناطق گوناگون شهر تهران است. برای این اجبار این لایه، ۶۰ درصد از مساحت هر گونه یا گونه مسکونی (دیتابیس کاربری اراضی) به صورت سطح زیربنای شاملی گرفته شد. خیابان‌ها و بزرگراه‌های شهر تهران، با استفاده از مساحت و خاص
خود، متغیرهای مؤثر در سیلاب‌های کوتاهمدت و بیش‌تر مؤثر شهر تهران مقدار گردید. شبکه‌های شمالی - جنوبی عامل تسهیل چرخ‌رانی روان‌آب و هدايت آن به سمت بافت مرکزی و جنوب شهر تهران هستند که ممکن
آن‌گرفتنی را در شیب‌های پایین به وجود می‌آورند. اجرای برگرافهای متعدد در اتمداد شهری - غربی نیز، که

* Parcel
قلع کنده‌های زهک‌های عمده شرط‌های، بسب شده کل‌شن و هل‌های فلویندان وا با مستندی‌های سیلاب‌های شرط‌های بسته‌بندی نمایه باشد.

با توجه به ابهب های احتمالی که به دلیل فلویندان کالبدی و فلویندان دسترسی‌های نامناسب، کم‌کاری خدمات و چرخ‌ساخت‌های ابزاری و ارتش‌های و میتی و اقتصادی تازه‌های دارد. بیان‌های فلویندان با همه که با کم‌کاری و با کم‌کاری شرط زیست‌پزشک و ارتباط‌های و نی‌پاسخ‌های کالبدی، اجتماعی، اقتصادی و خدمات شرط مشروط است. مطلق شاخص‌های مصوب شرایط عالی شرکت‌پزشک و معماری، وعید به‌همه‌ها شرط تهران ۱۴۷۹ ۱۲۴۸ هکا در به دلیل درا داردن هر سه شرط فلویندان (تیپ‌هاینی‌پزشک و زیست‌پزشکی) جزویي فلویندان مصوب شد. وعید زیاد و فلویندان با تراکم بالایی جمعیت و ابزاری‌پزشک باقی با نوری در مقابل مهاجرات محیطی، از جمله سیلاب‌های شرطی، بسته از مهم‌ترین مسائل شرط تهران است (عرب‌عرشی، ۱۳۸۵).

آداسامزی و ابزار تراکم جمعیت بر مبنای امر جمعیتی نواحی شرط تهران در سال ۱۳۸۸ صورت گرفت ابتدا فاصله‌های مداهن جمعیتی برای هر ناحیه از شرط تهران تهیه گردید. به‌سمی، بر اساس داده‌های فضایی و از طریق پلیگون‌های حساس، مشخص‌های محل‌های انداره‌گیری نسبه به نزدیک‌ترین نقطه‌های داده‌های منفرد محاسبه شد. بدین ترتیب، لحاظی سطحی از جمعیتی نواحی شرط تهران به صورت پلیگون‌های چندضلعی تهیه گردید.

چون آب‌گرفته‌های دهه‌ی پا در هنگام نارنج‌های شرطی در سه‌جوده گردیده نسبت به هم‌اراد با نسبت بین‌باین جنوب‌سر و افزایش احتمال آب‌گرفته‌های حاکی از نقش‌سیب در اگوی سیلاب شرط تهران است. از این رو، ارتفاع و شیب‌از داده‌های ارتفاعی سنجشی استری استخراج شده است.

شدکه‌های زهک‌های سیلاب‌های شرطی دارای مسئولیت و مشکلات فضایی‌های هستند، از جمله محدودیت ناحیه‌های بین‌باین، فضای‌های سیلاب‌های داده‌های دلیل که هم‌اراد باید خریده نمایندگی و هم‌ارادتی زده‌بین دانش‌آموخته‌های کلاسیک‌پژوهی و هم‌ارادتی مسئولیت‌های فضایی دانش‌آموخته (متحدثین مشاوری مسئولیتی آب از این بررسی، ۱۳۹۱).

پری درک رابطه‌ی بین عوامل فوق از ضریب همبستگی غیر یک‌طرحی کندال ۲ استفاده شده است (مهدف و ظاهری، ۱۳۸۲، ۱۴۶). این ضریب همبستگی با حرف یونانی ؟ (ناو) نمایش داده و از طریق رابطه‌ی ۲ تعريف می‌شود:

\[r = \frac{25}{N(N-1)} \]

که در آن M مجموع ضرایب همبستگی جفت و جور شده‌ی مورد نظر است. استفاده از روش کندال با توجه به ماهیت رتبه‌های بودن داده‌ها صورت گرفته است. رتبه‌های مورد نظر بر اساس ارتباط نظری متغیرها و سیلاب‌های سیلاب‌های شده است (جدول ۴).

(*) ASTER
(*) Kendal
برای تهیه نقته پتانسیل خطر سیلاب با استفاده از 8 متغیر فوق از مدل سلسله‌ریزی استفاده شده است.

<table>
<thead>
<tr>
<th>شیب</th>
<th>فشرده</th>
<th>بارش و مسکونی</th>
<th>مسکونی</th>
<th>شیب</th>
<th>کاربری اراضی</th>
<th>شیب</th>
<th>کاربری اراضی</th>
<th>فشرده</th>
<th>بارش و مسکونی</th>
<th>مسکونی</th>
<th>شیب</th>
<th>کاربری اراضی</th>
<th>شیب</th>
<th>کاربری اراضی</th>
<th>فشرده</th>
<th>بارش و مسکونی</th>
<th>مسکونی</th>
<th>شیب</th>
<th>کاربری اراضی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

در سطح کمتر از 0/01 معادل است.

برای محاسبه مقادیر و بردار ویژه، ستوانها با هم جمع و هر سلول ماتریس بر جمع ستون مربوط تقسیم شد. که این عمل برای 7 مدل ماتریس صورت گرفت. مرحله بعدی محاسبه میانگین سطح‌های ماتریس است که از آن به منزلی و نسبی استفاده شد. وزن میثاب برای عامل فاصله از شبکه ارتقاء به تعداد شماری - جنوبی 3/2132، فاصله از شبکه ارتقاء به جنوب شرقی - غربی 1/2477 و فاصله شبکه ارتقاء اراضی 1/2477 و ارتقاء 3/2040 محاسبه شد. از متغیر بافت فرسوده به دلیل عدم توزیع مناسب و تمرکز در محدوده‌های خاص صرف‌نظر شد.

<table>
<thead>
<tr>
<th>شیب</th>
<th>فشرده</th>
<th>بارش و مسکونی</th>
<th>مسکونی</th>
<th>شیب</th>
<th>کاربری اراضی</th>
<th>شیب</th>
<th>کاربری اراضی</th>
<th>فشرده</th>
<th>بارش و مسکونی</th>
<th>مسکونی</th>
<th>شیب</th>
<th>کاربری اراضی</th>
<th>شیب</th>
<th>کاربری اراضی</th>
<th>فشرده</th>
<th>بارش و مسکونی</th>
<th>مسکونی</th>
<th>شیب</th>
<th>کاربری اراضی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

| | | | | | | | | | | | | | | | | | | | |

CR = 0.0

1. Analytic Hierarchy Process (AHP)
پس از مطالعه و تهیه نقشه‌های سیالی بذری پلانشهر تهران در مقابل سیالی سیاله و دو حضوه به صورت تصادفی انتخاب شد و از دو مدل فکراتلی محیط - مساحت و تعداد - مساحت استفاده گردید.

فکراتلی محیط - مساحت دندی ریاضی برای نشان دادن ارتباط بین مساحت (A) و مساحت (P) فکراتلی‌های مشابه شکل است (6-4). این مدل از طریق رابطه شماره 4 به دست می‌آید:

\[P \propto A^{1/2D_{AP}} \]

رابطه 4

که در آن P محیط و A مساحت اجزای پیدا می‌شود. نیز با توجه به دقت‌های استاندارد، دو دامنه A و P برای دو دامنه دامنه‌های از 1 تا 2 دارد. گربه D_{AP} و مجموعه‌ای شامل سایر دامنه‌های را مانند مربع‌ها و دایره‌ها نشان می‌دهد. افزایش بالاتر فشردگی D_{AP} به‌صورت را بینان می‌کند و اگر D_{AP} برای 2 دامنه آغازه P \propto A بیشتر شکل را نشان می‌دهد. بر این اساس، با افزایش ارزش از 1 به سمت 2 بر میان آشفتگی و یافته‌های محیطی نسبت به مساحت پدیده مورد بررسی آزمایش سود که نشان دهنده آشفتگی در روابط پدیده است. مقدار D_{AP} از طریق رابطه شماره 5 در محاسبه تخمین می‌شود.

\[\log P = C + \frac{1}{2D_{AP}} \log A \]

رابطه 5

که عدد ثابت است. در مجموعه دامنه‌های دامنه‌های از 1 تا 2 دارد. گربه D_{AP} و مجموعه‌ای شامل سایر دامنه‌های را مانند مربع‌ها و دایره‌ها نشان می‌دهد. افزایش بالاتر فشردگی D_{AP} به‌صورت را بینان می‌کند و اگر D_{AP} برای 2 دامنه آغازه P \propto A بیشتر شکل را نشان می‌دهد. بر این اساس، با افزایش ارزش از 1 به سمت 2 بر میان آشفتگی و یافته‌های محیطی نسبت به مساحت پدیده مورد بررسی آزمایش سود که نشان دهنده آشفتگی در روابط پدیده است. مقدار D_{AP} از طریق رابطه شماره 5 در محاسبه تخمین می‌شود.

\[P \propto A^{0.5} \]

رابطه 8

مدل تعداد - مساحت با استفاده از ارتباط بین تعداد تجمعی و مساحت اجزای متعلق به پدیده‌ی از طریق رابطه شماره 7 مشخص می‌شود.

\[N (\geq A) \propto A^{-D} \]

رابطه 9

که در آن N مساحت اجزای پدیده و A تعداد تجمعی اجزای با مساحتی بیشتر از A است. به منظور نحوه توان D N \geq A \text{ با مساحتی بیشتر از A}

\[\log N (\geq A) = C - D \log A \]

رابطه 10

ارش دو توان میزان تغییر تعداد اجزای با اندازه آنها را تعیین می‌کند. D برای تغییرات کم به اندازه بزرگ با اجزای بیشتر با اندازه کوچک را نشان می‌دهد.

1. Least Squares
بررسی آشفتگی در الگوی خطر

شکل ۲. حوضه‌ی نمونه‌ای واقع در منطقه‌ی ۲ شهر تهران.

شکل ۳. حوضه‌ی نمونه‌ای واقع در منطقه‌ی ۱۷ شهر تهران.

 mạch ۱. حوضه‌ی نمونه‌ای واقع در منطقه‌ی ۱ شهر تهران.

شرح و تفسیر نتایج

هنگامی که تهران با شش شهر بانکی متوسط تا شش درجه روهی‌کاری، سایل در سطح گسترده‌ی شهر جاری می‌شود، اما عملکرد آن بر اساس میزان تغییر با تغییر مسیله‌های طبیعی شهر، چگونگی اجرای شیکی‌های ارتباطی (جهت شمالی - جنوبی با شرقی - غربی)، تفاوت در کاربرد اراضی/ پویش اراضی، تفاوت در الگوی سازه‌های شهری،
پیشنهدی خطر سیلاب در تهران در 5 رده در شکل 4 نشان داده شده است.

نتایج مدل محسیت - مساحت خطر سیلاب برای 5 رده خطر در شکل شماره 5 نشان داده شده است. این شکل ترتیب محسیت و مساحت هر یک از چهار محدوده در مقیاس لگاریتمی است. نتایج به دست آمده از ارتباط خطی بین نکات های محسیت و مساحت را بیان می کند که گزارش ارتباط توانایی آن را است. جدول شماره 4 شاخص های آماری محسیت و مساحت خطر سیلاب در تهران در 5 رده و جدول شماره 7 مشخصه های به دست آمده از مدل محسیت - مساحت خطر سیلاب را در حوضه های نمونه نشان می دهد.

جدول 4 شاخص های آماری فرکتال های محسیت - مساحت

<table>
<thead>
<tr>
<th>رده خطر</th>
<th>مساحت (Km²)</th>
<th>مساحت (Km)</th>
<th>مساحت (Km²)</th>
<th>مساحت (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>خیزه کم</td>
<td>88.17</td>
<td>1166</td>
<td>149.9</td>
<td>14.4</td>
</tr>
<tr>
<td>کم</td>
<td>52.23</td>
<td>1243</td>
<td>1111</td>
<td>14.4</td>
</tr>
<tr>
<td>متوسط</td>
<td>129.1</td>
<td>10.2</td>
<td>1243</td>
<td>14.4</td>
</tr>
<tr>
<td>زیاد</td>
<td>33.98</td>
<td>11.15</td>
<td>1520</td>
<td>14.4</td>
</tr>
<tr>
<td>مجموع</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
جدول 7. مشخصاتی به دست آمده از مدل فرتکالی

<table>
<thead>
<tr>
<th>R²</th>
<th>Dp</th>
<th>Da</th>
<th>DAP</th>
<th>1/DAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>1.08</td>
<td>1.800</td>
<td>1.200</td>
<td></td>
</tr>
<tr>
<td>0.97</td>
<td>1.08</td>
<td>1.790</td>
<td>1.218</td>
<td></td>
</tr>
<tr>
<td>0.96</td>
<td>1.100</td>
<td>1.788</td>
<td>1.220</td>
<td></td>
</tr>
<tr>
<td>0.97</td>
<td>1.130</td>
<td>1.789</td>
<td>1.230</td>
<td></td>
</tr>
<tr>
<td>0.96</td>
<td>1.158</td>
<td>1.791</td>
<td>1.240</td>
<td></td>
</tr>
</tbody>
</table>

شکل 5. نمودار لگاریتمی میکیت - مساحت رده‌های خطر سیلاب (نمودارهای آنف، ب، ج، د و ه به ترتیب برای رده‌های خطر خیلی کم، کم، متوسط، زیاد و خیلی زیاد).

نمودار لگاریتمی میکیت - مساحت رده‌های خطر سیلاب از طریق روش کچک-ترین مربع یا محاسبه گردید. نتایج نشان می دهد که ارتباط خطی بین لگاریتم‌های میکیت و مساحت وجود دارد که ارتباط قانون نیوتن بین آن‌ها را بیان می کند. همچنین نسبت‌های مربع (R²) بالاتر از 0.96 هستند. شبکه خط مدل شده در رده‌های سیلاب به ترتیب 0.603/1، 0.608/1، 0.615/1، 0.632/1 و 0.646/1 از عدد 1 می‌تواند به این ترتیب رسد که ارزش خط سیلاب شهر تهران در هر پنج رده از آن شده‌است. نتیجه رشد که اگزی خطر سیلاب شهر تهران در هر پنج رده از آن شده‌است.

بدست‌آمده برای رده‌های خطر خیلی کم، کم، متوسط، زیاد و خیلی زیاد به ترتیب از 0.98، 0.97، 0.96، 0.97 و 0.96 به دست‌آمده برای رده‌های خطر خیلی کم، کم، متوسط، زیاد و خیلی زیاد به ترتیب از 0.5 دیجیت DAP با ابعاد فرتکالی رده‌های خطر به دست‌آمده.
که نتیجه‌ی آن ۱۸۶/۱،۱۸۸/۱،۱/۱،۱۳/۱ و۱۵۸/۱ بوده که میزان تغییر تعداد تجمع پیلوگون‌های خطر سیلاب و ناحیه‌ی ساقع سازده، از طریق نمودار لگاریتمی برای رده‌های خطر محاسبه شد (شکل ۶). نتایج نشان می‌دهد که ارتباط خطی بین لگاریتمی تعداد تجمعی و مساحت با ضریب R بالاتر از به دست آمده. داده ۱۸۸/۱ وجود دارد. توان D (که از رابطهٔ

\[\log N(A) = C - D \log A \]

رده‌های خطر به ترتیب ۱/۷/۹،۱/۷/۹،۱/۸/۵ و ۱/۸/۸ به دست آمده است؛ این افزایش بین‌گر کوچک‌تر شدن اندازه پیلوگون‌های خطر از رده‌ی خلیل کم به سمت رده‌ی خلیل زیاد است. به عبارتی، با افزایش رده‌ی خطر، پیلوگون‌های ان کوچک‌تر می‌شوند. این وضعیت حاکی از افزایش آتش‌سوزی‌ها در کنار پیلوگون‌های خطر سیلاب با افزایش میزان انست. زمانی که پیلوگون‌های خطر اندازه‌ی کوچکی داشته باشند به این معنایی که درگاه از خطر در بعد مکانی به شدت متغیر است و همین مناسبی به عنوان آشکار نوعی آشکاری‌ها در این نمودار باشد.

شکل ۶: نمودار لگاریتمی تعداد تجمعی و مساحت رده‌های خطر سیلاب (نمودارهای الف، ب، ج، د و ه به ترتیب برای رده‌های خطر خلیل کم، کم، متوسط، زیاد و خلیل زیاد)
نتیجه‌گیری

الگوی رخداد پیده‌های طبیعی و حضی مکارط‌های طبیعی در حالت معمول از نوعی نظام برخورد می‌کند. چنان‌چه به دنبال شرایط طبیعی رخداد آن بر هم خورده، بی‌نظمی و کیفیت رنوی‌های رخ‌می‌های باید مه‌فه. سیالاب مکارط‌های طبیعی است که اگر الگوی خاصی نیاید که از روابط بین عوامل آن تولید می‌شود، رخداد کیاس در پی‌بند سیالاب روند قابل پیش‌بینی آن را تغییر می‌دهد. به عبارت دیگر، سیالاب الکترو-بی‌نظمی می‌باشد. لیکن بی‌نظمی در الگوهای رخداد آن می‌تواند حاکی از تغییر ماهیت آن باشد. تنها کیاس یا بی‌نظمی و عفونتگی در مکارط‌های سیلاپ با هدف‌های قابل رشدی است. رخداد سیلاپ در تهران به آستانه رخداد بارندگی وابسته است. اما الگوی گزارش‌گر آن در تهران بمنزله مکارط‌های بین عوامل دیگری بسیاری که در پژوهش‌های گزارش‌گر طبیعی کیهان و بهتیزی مکارط‌های کیهانی در تهران شرکت نکرده‌اند. با استفاده از اگر اکثر بی‌نظمی و کیفیت خود پیش‌بینی نشان دهد که اگر الگوی خاصی نیاید که از روابط بین عوامل آن تولید می‌شود. رخداد الکترو، پیش‌بینی و استفاده ازآن در پژوهش‌های مسیر سیلاپ، الکترو، بی‌نظمی و مکارط‌های کیهانی نشان می‌دهد. در نتیجه، این که به طور مکار، باید به تهران میرود و بررسی قرار گرفته و طرح‌های متعدد برای آن جزوه‌های بین آزماده است. اما همچنین پیداگوگی سیلاپ برای تهران مکارط‌های کیهانی و بی‌نظمی ناب‌پذیر و مهار‌پذیر محسوب می‌شود.
منابع

پرهام در مطالعه، رضا، 1380. ناحیه‌بندی پایتخت به‌صورت استفاده از فراکتال‌ها، پایان‌نامه‌ی کارشناسی ارشد، بخش مهندسی دانشگاه تهران.

رامشته، محمد حسین، 1382. تعریف کیاس در زمین‌شناسی، مجله جغرافیا و توسعه، 36-32.

http://www.ndmo.ir/fa/sazman/etelaat

مشورت میراث اطلاعات و جواهرات، سازمان میراث جوهران، 1391. گزارش وزارت‌ها، مسئول و راهبردهای توسعه شهر تهران.

عرب احمدی، مرام، 1386. آشنایی با ناحیه پایتخت شهری و تحویل ناحیه کیاس ای، ماهنامه شهرداری، 41:

16-21.

فرزادنیکی، محمد، محمدتقی آقابابایی و مروی‌بیک مهدی‌نژاد. 1389. بررسی وضعیت رود دریه فرح‌خراز (قبل و بعد از سازماندهی)، دانش شهر، 15: 40-11.

فهروئی تالا، منیژه، 1385. ارزیابی سد امیرکبیر کرج. مجله علمی - پژوهش جغرافیا و توسعه، 3: 185-199.

2789. تأثیر حوضه‌های بالادست تهران بر رخداد سیلاب در مناطق مسکونی تهران (مطالعه موردي: تأثیر حوضه فرح‌خراز در منطقه 2 تهران)، کنفرانس ملی مدیریت سیلاب‌های شهری، 12-11 مرداد 1389. دانشگاه تربیت مدرس.

لادن خدیع غربی‌نده، 1392. بررسی آشناگی در میکروندفرم‌های تالاب گاروختی، مجله پژوهشی زمین‌پژوهی، 2: 44-51.

خدیجی علی نوری، 1394. ریابی مخاطرات پاییز حویض سلطان با بررسی آشناگی در میکروندفرم‌ها. دانش مخاطرات، 21: 123-125.

کرم، امیر، 1391. تعریف آشناگی (برخال) و سیستم‌های غیر خطی در زمین‌شناسی. فصل‌نامهی جغرافیای طبیعی، 8: 37-62.

مهدوی، مصطفی و مهدی طاهر خانی، 1383. کاربرد آمار در جغرافیا. تهران، نشر قوام.

مهدسین مشاور گروه تحقیقات آب و انرژی (JWERC)، 1391. طرح جامع حفاظت و ایجاد منابع طبیعی شمال تهران و شهرهای (البرز جنوبی)، گزارش هیدرولوژی.

