استفاده از نرم‌افزار ComMIT در پهنای بندی خطر سونامی در سواحل جاسک

افرازی مقدمی، استاد زیست‌فلاورولوژی، دانشگاه تهران

علیرضا صالحی پور میلایی، کارشناس زیست‌فلاورولوژی سواحل، سازمان زمین شناسی و اکتشافات معدنی کشور

مهدی جاکری، کارشناس ارشد زیست‌فلاورولوژی سازمان زمین شناسی و اکتشافات معدنی کشور

مصطفی مقدمی، کارشناسی ارشد، دانشگاه سمنان

دریافت مقاله: 20/12/1392 پذیرش نهایی: 27/3/1393

چکیده

دریای عمان به واسطه وجود منطقه‌های فرورانش در نزدیکی ساحل جاسک ایران در صورت وقوع زلزله‌ای با پرتوی بالا در برخی سواحل، خطرات شدیدی به تأسیسات ساحلی و مسکونی وارد خواهد آورد. در سواحل شمالی هرمز در سال 1383، با وجود که بین کانون زمین‌لرزه این منطقه هنوز و شرایط ساحلی ایران در کنار دریای عمان مطلوب برای کارگیری یکدایی وجود داشته، موج‌های سونامی در شهیر چابهار خسارت‌های اندرکی بر جای گذاشته است. این آن معنی است که اگر کانون زمین‌لرزه به ساحل ایران نزدیکتر باشد، شرایط ساحلی ایران نیز با خطر جدی رو به رو می‌شود. با توجه به اینکه در مورد زلزله خور جهان قرار دارد، وقوع سونامی در دریای عمان امری دور از ذهن نخواهد بود. از این رو ضرورت مطالعه جامع درباره سونامی در دریای عمان احساس می‌شود. در این مقاله سعی شده است که علاوه بر مطالعه زمین‌شناسی مکانیک و پرستی خاصی‌های تأثیرگذاری وقوع سونامی در سواحل دریای عمان پرداخته شد. علاوه بر که، این استفاده از داده‌های حاصل شده در GIS و محل‌سازی در نرم‌افزار ComMIT در سواحل دریای عمان برای تعیین موقعیت و تعریف تأسیسات مسکونی و پرستی و بررسی‌های بلندمدتی که برای توسعه این نیاز در دست اجرا است هم‌اکنون بسیار فراوانی در دریای عمان دارد. از این رو، محل‌سازی وقوع سونامی با دقت بسیار در این منطقه اجرا شد. نتیجه‌گیری به دست آمده نشان می‌دهد که منطقه در مسیر تأثیرپذیری این منطقه از سونامی با توجه به بزرگی زلزله به وقوع پیوسته و موقعیت جغرافیایی سواحل این شهر، گزینه لازم است و در شدت‌ترین زلزله بخش مهمی از تأسیسات ساحلی آسیب جدی خواهد دید.

واژگان کلیدی: سونامی، دریای عمان، مدل‌سازی، جاسک، ComMIT

Email: Emoghimi@ut.ac.ir

نویسنده مسئول
به عقیده اغلب کارشناسان و متخصصان ایرانی در دریای عمان، یعنی از تنها هر محوری می‌تواند بین ایران و پاکستان، امکان سواحل و جزایر و دریای عمان از نظر اقتصادی و سیاسی اهمیت بسزایی داشته باشد. ایجاد همبستگی و هماهنگی در این زمینه، از نظر جهانی و نواحی مختلف اقتصادی، سیاسی و اجتماعی، اهمیت دارد. با توجه به توجه به این موضوع، در این مقاله به بررسی و تحلیل این امر پرداخته می‌گردد.

مقدمه

به این نظریه می‌گردد که اگر از نظر اقتصادی و سیاسی، امکان سواحل و جزایر و دریای عمان بین ایران و پاکستان وجود داشته باشد، توانایی این دو کشور برای ایجاد همبستگی و هماهنگی در این زمینه، از نظر جهانی و نواحی مختلف اقتصادی، سیاسی و اجتماعی، اهمیت دارد. با توجه به این موضوع، در این مقاله به بررسی و تحلیل این امر پرداخته می‌گردد.

استفاده از نرم‌افزار ComMIT در ...
نشریه تحلیل فضایی مخاطرات محیطی، شماره ۲، تابستان ۱۳۹۱

جاسک سر نامیده می‌شود. بندر جاسک از لحاظ راهبردی اهمیت بسیار فراوانی دارد. استقرار یافته‌های دوم نیروی دریایی در جاسک و همچنین، حضور نیروی دریایی سیاه به لحاظ جایگاه نظامی موقعیت بسیار ممتاز را برای این منطقه به وجود خواهد داشت. در بیان آن مهارت ارائه‌دهنده کارکنان نظامی در این منطقه جمعیت شهرستان جاسک را در بخش شمال آن بزرگتر نموده‌اند. داده‌ها بر این حاصلی معروف شده‌اند که این منطقه به عهده این شهرستان‌ها می‌باشد.

آن طرح احداث خط لوله‌ای نکا / جاسک (با هدف ایجاد ظرفیت انتقال نفت خام به کشورهای خاورمیانه در علت خرک تأسیسات موجود نکا با احداث خط لوله‌ای به قطر ۴۸ اینچ و به طول تقريبی ۱۴۴۰ کیلومتر و به ظرفیت حدود یک میلیون بشکه در روز با هزینه‌ای در حدود ۷/۲ میلیارد یورو در این منطقه به اجرا در خواهد آمد. با توجه به موارد ذکر شده در بالا و اهمیت و نقش بسیار فراوان که این بندر در آن به نمای خواهد کرد، به یکی از نقطه‌های اقتصادی، نظامی و تجاري منطقه تبدیل خواهد و در تبادل نواحی پرپرموئی خود نقش مهمی را ایفا خواهد کرد.

شکل ۱. موقعیت جغرافیایی شهر جاسک

تکنولوژی باعث صفحه‌های هنگارای هند با میکرو پلی‌تی‌های ایران و عربی و فرورونشان آن به میزان حدود ۳۰ تا ۵۰ میلی‌تر یک صفحه‌ای تکنولوژیکی که در یکی از آسیاب جنوبی و در طول سواحل مکران ایران و پاکستان به وجود آورده است (۱۹۸۵ Platts et.al.). این صفحه‌ای تکنولوژیکی چهت بافته‌شده‌ی در جنوب غربی یکی از بزرگ‌ترین لی‌های برافراشته بر روی زمین است. بیش از ۸۰۰ کیلومتر طول دارد و از سمت شرق و غرب با گسل‌های تراس قرار محدود شده‌اند که با عنوان مرز صفحات معروف هستند. این جبهه شامل زون سایمونتی مکران ۱ و چالای توئیبیگالی به هم پیوسته است که در سطح و سطح با رشته‌سازی متفاوت شده است. همچنین، حاشیه شمال مشترک برافراشه‌ی MCR (MAP) یا "برافراشته مکران" (MCR) یا "برافراشته ساحلی مکران" (MCR) که در سمت غرب منشور (Regard et.al., ۲۰۰۳) نشان می‌دهد. (شکل ۲).
استفاده از نرم افزار ComMIT در...

دریای عمان و منطقه دور از ساحل مکران در طور سال‌ها به طور فشرده‌ای با نتیجه‌برداری‌های سواد ۱ بازتاب‌های لرزه‌ای با قدرت تفکیک بالا و تک کاناله، لرزه‌گانگری بستر اقیانوس، مانیتورینگ میکرو لرزه‌ها، مکانیکی، گرافیکی و مجموعه داده‌های لرزه‌ای دو بعدی زونوم آنلاین، دانشگاه کمربیج و مؤسسه‌ی بین‌المللی اقیانوس شناسی پاکستان، کروز (Dorostian and Gheitanchi, ۱۳۸۷) بررسی شده است (شکل ۲)

(۱) Dorostian and Gheitanchi, (۱۳۸۷)

\[\text{شکل ۲: توزیع کانون‌های زلزله در طول مزرعه اکتشافی (Dorostian and Gheitanchi, (۱۳۸۷))} \]

پیشرو زلزله‌های بزرگ سطحی در منطقه‌ی ساپاداکشین زون‌های مکران تولید می‌کند. بنابراین، بررسی زنده‌ی ساپاداکشی، جهان و پتانسیل سونامی‌های آن‌ها امروز ضروری است. وجود زلزله در منطقه‌ی مکران و دریای عمان و بروز سونامی ۲۷ نوامبر ۱۹۴۵ در ساحل مکران دلالت بر ناامن بودن منطقه (از نوع سونامی) دارد (شکل ۳). تفسیر زئوفیزیکی منطقه نیز صحت این گفته را تایید می‌کند. سواحل بالای آن‌ها در طول سواحل مکران این مدل تکتونیکی زون ساحلی را در دور از نواحی داخلی این بکند (Heidarzadeh, et.al., ۲۰۰۷) مطالعات نشان داده که کمترین سرعت فرو رانش صفحه‌ی عمان به زیر صفحه ایران حدود ۱۹/۵ میلی‌متر در سال و بیشترین این مقدار نیز حدود ۲۷ میلی‌متر در سال برآورد می‌شود.

\[\text{- swath} \]
این روبیاد تنها روابط زمین لرزه و سونامی است که در منطقه‌ای می‌گردد که دارای دستگاه‌های زمین لرزه نگار حیاتی است. و از این رو، اهمیت افزایش دارد. رخداد این سونامی لطافت مالی و جانی گسترده‌ای در سواحل ایران، پاکستان، هند و عمان بر جای گذاشته (Ambraseys and Melville، 1987) در سواحل یکنواخت بیشترین ارتفاع شدیده به 15 متر رسید. در گزاره ارتفاع امواج به حدود دو متر رسید. شاهرودی بندری می‌تواند و اورمانه به‌مثابه بزرگ دیدن که بر اثر آن حادثه ۲۰۰۸ نفر کشته شدند و آسیب‌های قرار بسته به تأسیسات ساحلی وارد آمد. بر اساس گزارش‌های موجود، یک رخداد سونامی، قسمتی از این دو شهد به زیر آب و پر رفت و شکست‌های اساسی و عمده‌ای در زمین پیدا آمد و در بعضی نقاط از حدود ۱۵ متر زمین باشگاهی بود (Ambraseys و Melville، 1987) همچنین، مبنای پرخاشگر زمین‌نیز در حدود دو متر گزارش شده است (یگ و هیکاران، ۱۹۷۹) در بین‌النهرین ارتفاع امواج سونامی حدود دو متر گزارش شد (Ambraseys و Melville، 1987) در گوگرد به ۱۱ متر رسید. اینباره گزارش‌های از این امواج سونامی در منطقه (عمان) و تواحی ساحلی ایران وجود دارد (موردی و باتبای، ۱۹۹۹)، اما هیچ‌گونه اطلاعاتی در مورد جنایات این روبیاد و تلفات جانی و مالی ناشی از آن در سواحل ایران و عمان ثبت و گزارش نشده است (۲۰۰۸). (جدول ۱).

جدول ۱: جدول زمانی زلزله‌های بزرگ تاریخی و ثبت شده دستگاه‌های (۲۰۰۷)، (Heidarzadeh، et.al.)

<table>
<thead>
<tr>
<th>رده‌بندی</th>
<th>تاریخ</th>
<th>عرض</th>
<th>طول جغرافیایی</th>
<th>عمق کانویام (کیلوتر)</th>
<th>بزرگی</th>
<th>S</th>
<th>T</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۹۳۷</td>
<td>۹۲</td>
<td>۷۷</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۹۳۷</td>
<td>۹۳</td>
<td>۸۸</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۴۳</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>۹۴۴</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۹۴۴</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۹۴۱</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>۹۴۱</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>۹۴۲</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۹</td>
<td>۹۴۳</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td>۹۴۴</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۱۱</td>
<td>۹۴۴</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۱۲</td>
<td>۹۴۴</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
<tr>
<td>۱۳</td>
<td>۹۴۵</td>
<td>۹۴</td>
<td>۴۴</td>
<td>۶۷</td>
<td>۶</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td></td>
</tr>
</tbody>
</table>

a: بزرگی امواج سطحی;
b: بزرگی لحظه;
c: تعیین شده با مرکال.
استفاده از نرم افزار ComMIT در ... 6

برای مدل سازی سونامی و موج حاصل از آن از نرم افزار Commit استفاده گردیده است. فرمول های ذیل مبنای کار نرم افزار برای مدل سازی سونامی است. با توجه به این فرمول، تقریب رفتار موج در مناطق ساحلی به نماشگر در آمد اما اعمق موجی که هنوز شکسته نشده و ۷ به ترتیب سرعت میانگین موج در زمانی \(x \) و \(y \) هستند:

\[h = \eta + d \]

در نکته‌ی خشک‌نیمی (Yanenko, 1971), پاسخ عدید مسئله دو بعدی به پاسخ دو سری معادله یک بعدی تقسیم می‌گردد. این امر با تقسیم سیستم معادلات حاکم به دو بخش محقق می‌گردد که هر یک دارای پارامترهای یکی از ابعاد قضایی هستند.

\[
\begin{align*}
&h_t + (u h)_x + (v h)_y = 0 \\
u_t + uu_x + vv_x + gh_x = gd_x \\
v_t + uv_x + vv_y + gh_y = gd_y
\end{align*}
\]

از سوی دیگر، با توجه به تنوری تفاوت محدود داریم:
نشریه تحلیل فضایی مخاطرات محیطی، شماره 2، تابستان 1393

زیاد بری، با توجه به مدل سازی انجام گرفته اولین تغییر پس از موقع سونامی درا کاهش سطح آب دریا است و این روند تا 11 دقیقه پس از آن ادامه می یابد و در این زمان بیشترین میزان پسروی آب از خط ساحلی به میزان دو متر مشاهده می شود (شکل 7). پس از این زمان، اولین موج به سمت جاسک هجوم می آورد. موج اول ابتدا به دامنه جاسک بحر وارد می کند و سپس، کل ساحل شرقی جاسک را تحت تأثیر قرار می گیرد. افزایش موج اول در برخورد با این منطقه در 24 دقیقه پس از موقع سونامی به ارتفاع دو مترب می رسد و در ساحل شرقی بیشتر می کند (شکل 7)، این فرآیند در ساحل غربی جاسک با تأخیر در ده دقیقه ای روی می دهد. اولین موج بلند به ساحل غربی جاسک در 26 دقیقه بعد از موقع سونامی برخورد

شکل 5: بلکه و سولهای مورد بررسی در پهن بندر خطر سونامی.

داده های هیدروگرافی مواد نیاز در منطقه از نمایه های آذرینیتی 1 و 2000 و 135000 و 1400 جاسک سازمان نشات در محدوده تحقیق در ناحیه ساتری تهبیه گردید و با استفاده از ArcGIS و Spatial Analysis و نرمافزار ComMIT کشور به صورت رویم تهیه گردید. این نرم افزار، اطلاعات در مدل به صورت فایل های ASCII و به شکلی درسمی، از داده های 135000 و 14000 جاسک سازمان نشته در موقعیت های پایداری کشور به تهیه گردید. تصویر ماهوارهای IRS و لیس III و پان با قدرت تفکیک نیم مترا در این مطالعه استفاده شد. پس از انجام دادن تصحیح های زنده می روزنده در نرمافزار ENVI نتایج به دست آمده بر روی این تصاویر همبستگی داده شد و مناطق در معرض تهدید بر روی آن نشان داده شد.

شرح و تفسیر نتایج

الف) آموز حاصل از سونامی بر سواحل جاسک

با توجه به مدل سازی انجام گرفته اولین تغییر پس از موقع سونامی درا کاهش سطح آب دریا است و این روند تا 11 دقیقه پس از آن ادامه می یابد و در این زمان، بیشترین میزان پسروی آب از خط ساحلی به میزان دو مترا مشاهده می شود (شکل 7). پس از این زمان، اولین موج به سمت جاسک هجوم می آورد. موج اول ابتدا به دامنه جاسک برخورد می کند و سپس، کل ساحل شرقی جاسک را تحت تأثیر قرار می گیرد. افزایش موج اول در برخورد با این منطقه در 24 دقیقه پس از موقع سونامی به ارتفاع دو مترب می رسد و در ساحل شرقی بیشتر می کند (شکل 7)، این فرآیند در ساحل غربی جاسک با تأخیر در ده دقیقه ای روی می دهد. اولین موج بلند به ساحل غربی جاسک در 26 دقیقه بعد از موقع سونامی برخورد
می‌کند و ارتفاع آن به یک متر می‌رسد (شکل ۷، C) و این در زمانی است که در ساحل شرقی سطح آب به میزان چشم‌گیری و در حدود ۸/۲۵ متر پس از می‌کند و موج دوم آماده هجوم به ساحل شرقی می‌شود و در حدود چهل دقیقه بعد از وقوع سونامی دومین موج به ساحل شرقی جاسک برخورد می‌کند. ارتفاع این موج در بیشینه‌ی خود در حدود ۸/۲۵ متر است (شکل ۷، D). همزمان با برخورد این موج به ساحل شرقی در ساحل غربی جاسک شاهد پس‌روا آب به میزان ۱/۵ متر هستیم و دریابی آن در ۴۶ دقیقه بعد از وقوع سونامی دومین موج به ساحل غربی برخورد می‌کند و ارتفاع آن به دو متر می‌رسد که قوی‌تر از موج اولی است. در این مرحله، آتار موج با خور یک بینی نیز می‌رسد و سطح آب آن را به میزان یک متر افزایش می‌دهد. بعد از یک ساعت و هشت دقیقه سومین موج نیز به ساحل جنوبی جاسک برخورد می‌کند. بیشینه‌ی ارتفاع این موج نیز به ۸/۲۵ متر می‌رسد (شکل ۷، E). بعد از موج سوم امواج به طور بی‌پی به ساحل برخورد می‌کند، ولی قدرت اول را ندارند به تدریج ارتفاع این امواج کاهش می‌یابد.
ب) طبقه‌بندی سونامی‌ای استفاده از ارتفاع موج

طبقه‌بندی‌های متغیر درباره سونامی‌ها وجود دارد. یکی از آنها طبقه‌بندی Shoto (2003) است که که با توجه به شدت زلزله و ارتفاع امواج با توجه به تأثیر سونامی بر سه مؤلفه: الف) تأثیر بر انسان؛ ب) تأثیر بر اقتصاد از جمله قابلیت‌ها و ج) تحقیب ساختمان‌ها به وجود آمدن که آنها را به ۱۲ طبقه تقسیم‌بندی کرده است (جدول ۲). این طبقه‌بندی‌ها عبارت‌اند از: I) محسوس، II) ضعیف، III) نسبتاً ضعیف، IV) قوی، V) نسبتاً قوی، VI) قوی، VII) نسبتاً مخرب، VIII) مخرب، IX) بسیار مخرب، X) ویرانگر، XI) نابودکننده؛ XII) اهندام کامل (Gerassimos, 2001). (Shoto, 2003).

جدول (۲) ارتباط بین میزان تأثیرگذاری مؤلفه‌ها (۲۰۰۳)

<table>
<thead>
<tr>
<th>شدت سونامی</th>
<th>ارتفاع موج به متر</th>
<th>شدت تخریب</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-V</td>
<td>1.0</td>
<td>۰</td>
</tr>
<tr>
<td>VI</td>
<td>2.0</td>
<td>۱</td>
</tr>
<tr>
<td>VII-VIII</td>
<td>4.0</td>
<td>۲</td>
</tr>
<tr>
<td>IX-X</td>
<td>8.0</td>
<td>۳</td>
</tr>
<tr>
<td>XI</td>
<td>16.0</td>
<td>۴</td>
</tr>
<tr>
<td>XII</td>
<td>32.0</td>
<td>۵</td>
</tr>
</tbody>
</table>

با توجه به تقسیم‌بندی صورت گرفته در مدل بالا امواج حاصل از سونامی در سواحل جاسک ارتفاعات بین ۱ تا ۳ متر را خواهند داشت. غربی‌ترین ژئوهای VII، VIII و بسیار مخرب، صورت گرفته اول و دوم حاصل از سونامی در سواحل جاسک ارتفاعات بیش از ۴ متر و حتی تا حدود ۸ متر را به خواهند داشت. این را در بر خواهد گرفت. از این رو، دو رده VII، VIII و بسیار مخرب در این منطقه بیشترین تأثیر را خواهند داشت. با استفاده از مدل‌های صورت گرفته تأثیر آنها در روی ساحل به شکل زیر خواهد بود.
استفاده از نرم‌افزار ComMIT در ... 31

VII: هخشب
ثؿيبضی اظ وكتی ٞبی وٛچه اظ ثیٗ ذٛاٞٙس ضفت ٚ وكتی ٞبی ثعضی تط ... پٕتطیٗ ٔيعاٖ پٕکطٚی ٔٛد زض ربؾه ٔطثٛط ثٝ زٔبغٝ

 IRS LISS III

شکل 8: یپتهمهی تحت تأثیر بیشینه سونامی در شهر جاسک بر روی تبادل ماهورهای

نتایج بی دست آمدن از مدل‌سازی سونامی در سواحل بندر جاسک، که یپتهمهی تحت تأثیر آن را در دوره‌های بی‌شروی و پس‌روی امواج حاصل از سونامی در شکل 8 نشان داده است، در نرم‌افزار ArcGis و بر روی تبادل ماهورهای جاسک با رسایی گردیده‌ای از لحاظ میزان تأثیرپذیری از سونامی، شهر جاسک به‌ساده بخش تفکیم می‌شود: اولی (ساحل شرقی جاسکی؛ ب) دماغه جاسک و (ج) ساحل غربی. ساحل شرقی اولین منطقه‌ای است که با هجوم امواج و بزرگترین امواج مواج، تا ارتفاع 2/5 متر، است و بیشترین میزان بی‌شروی امواج در ساحل با توجه به برنامه مدال‌سازی نرم‌افزار، در حدود 1/5 کیلومتر (شکل 7، D)، در این منطقه قرار دارد. در این منطقه، شبیپ در حدود یک درصد است و از لحاظ توبورگری شرایط مسایعی را برای خیزاب موچ بر روی ساحل فراهم می‌آورد. در ساحل شرقی جاسک، تمرکز بسیار فراوانی از ادارات دولتی و نظامی، از جمله، فرودگاه جاسک و اسکله بندری را دربابة سه سه‌بسته می‌شود. در اولین ماهورهای ایجاد شده سونامی این تأثیرات به‌دست آمده تأثیر و ثبت رود و سه سه‌بسته و ایجاد امواج داهش. فرودگاه نظامی جاسک و اسکله بندری را دربابة سه سه‌بسته کامل بی‌شمار آنها می‌آمده خواهد داشت. شرکی نیز در محدودیت فرودگاه جاسک صرفاً خواهد گرفت. کمترین میزان پیشروی موچ در جاسک مربوط به دما‌ها
تشریح تحلیل نظرات محیطی، شماره ۲، تابستان ۱۳۹۳

جاسک است. زیرا این منطقه بر روی سواحل بالا‌المندی بیشتری از سواحل بالا‌المندی قرار دارد. این سواحل به صورت پرتابه‌ای با ارتفاع حدود دو متر شروع می‌شود و در بعضی نقاط به هشت متر نیز بخش‌های زیادی از شبه‌جزیره برجسته و ترسیمی در این منطقه به صورت دوره‌ای و بخش‌های زیادی از شبه‌جزیره برجسته و ترسیمی در این منطقه به صورت دوره‌ای و

لخت. این سواحل بالا‌المندی در حدود دو متر نیز بخش‌های زیادی از شبه‌جزیره برجسته و ترسیمی در این منطقه به صورت دوره‌ای و بخش‌های زیادی از شبه‌جزیره برجسته و ترسیمی در این منطقه به صورت دوره‌ای و

 produktów در لحظات اولیه. در این منطقه نیز تغییرات مهمی در این منطقه وجود دارد. میزان سخت‌ساز وارد شده با تأثیرهای ساختاری کم خواهد بود، ولی مناطق مستقیم واقع در منطقه بکینی در ساحل غربی را تحت تأثیر قرار خواهد داد.

نتیجه‌گیری

دریای عمان به دلیل اینکه محل برخورد پلی‌های قاره‌ای با یکدیگر است و قرار گرفتن سایشکش زون با عمق بیش از ۲۰۰۰ متر در نزدیکی ساحل ایران و نا آرامی پوسته‌ای این منطقه را افزایش داده است. در گذشته شاهد واژه‌های زنگه‌بندی شدید در برخی دریا و منطقه ساحلی بوده است. وقوع زنگه‌بندی برمی‌گزار در برخی دریا و منطقه سایشکش زون در بدون شرایط مناسب، از جمله ارتفاع، با امکان وقوع سوانحی از مخرب در حدود دریای عمان و تهیه هر مهمی‌ای مورد. از این رو، نواحی ساحلی ایران در برای سوانحی سیاسی بی‌پرداز و به‌ویژه تأثیر این بی‌پرداز بر روی خطوط ساحلی امری بسیار ضروری است. شهوت‌های مهمی چون بدرعی، جاسک و چابهار واقع در نواحی ساحلی دریای عمان، تطبیق‌های اقتصادی و نرخ ایران محسوب می‌شود که در برای وقوع نگاه یافته‌گاهی گونه مشاهده کرد که شهوت‌های ساحلی دریای عمان خواسته‌های سیاسی برای فراوانی را متحمل شدند (مالحمی پور و نازدیکی، ۱۳۸۶). وقوع حوادث دریایی هم‌التاون سوانحی بدون شک خشایار بسیار شدیدتری را بر این مناطق تحمیل خواهد کرد. از این رو، در این تحقیق سعی بر این شد با استفاده از پیشینه وقوع سوانحی گذشته، مدل‌سازی بر روی منطقه نمونه آزمایشی جاسک به اجرا دوآمی. نتایج به دست آمده از این تحقیق در شهر جاسک نشان داده‌اند که اثر بسیار مخرب این بی‌پرداز در این شهر است و تأثیرات زنبوریان بر این شهر را با آسیب جدی مواجه خواهد کرد. بیشترین خسارت‌های شریک ساحل جهنمی مشاهده شد و علت آن این است که مستقیماً در معرض امواج سوانحی قرار دارند. شرایط خطری و بی‌پردازی به دلیل شرایط نوبت‌گرفتی در این منطقه فراهم است. سوانحی در این منطقه جاسک را به دلیل ارتفاع از سطح دریا و ساحل غربی جاسک را به دلیل کاهش ارتفاع سوانحی فراهم می‌کند. سیستمی به دلیل بحرگاه و بخش‌های بسیاری در این منطقه می‌رسد و خسارت‌های بی‌پرداز در این منطقه کمتر از ساحل شرقی خواهد بود. این آمادگی در برای مخازن نویعی آمادگی است که به منظور به حداقل رساند زیان‌های جانی و مالی ناشی از شروع مخاطرات به‌کار گرفته می‌شود. این آمادگی‌ها شامل این موارد است.

1. شناسایی مناطق با حرکت‌های مخاطراتی‌امیز
2. آگاهی مردم محلی از مخاطرات
3. توسعه پایدار زیرساخت و
4. برنامه‌ریزی جامع برای واکنش‌های محیطی، موقع و مؤثرات فوری از سوی افراد و گروه‌های (مکتبی، ۱۳۹۲).

با توجه به نتایج به دست آمده از این تحقیق موارد زیر پیشنهاد می‌شود:

Rised Beach
1. با توجه به اینکه نوار سالخی شریفی جاسی بیست‌دری مسیب را از سوئیه می‌شود می‌شود:
الف: ادارات مهم دولتی از جمله فرمانداری شهرداری، نیروی انظمام و تشکیلات امانه و نجات، در خشک مرکزی شهر
متمرکز می‌شود تا صورت وقف سوئیه میکان مدیریت بحران از این مرکز فراهم باشد.
ب) برنامه توسعه آن شهر به سمت شمال شهری جاسی خانه‌های سوئیه و از سایه و سازه‌های غیرمجاز در
محدوده شرطی و غربی شهر یا جهیزی به این آید.
ج) فروغ‌داد جاسی خط‌بند نیازمندی سالخی جاسی در مقابل هوجود سوئیه خواهد دید. از این رو به ادامه
ساخت و گسترش این فروغ‌داد جلوگیری شود و محل جدیدی برای این پیش‌بینی گردد.
دا) محل اتصال خط لوله نفت برای وتجهیز آن در دامنه جاسی تعیین شود.
2. این سیستم هشدار سوئیه می‌تواند خسارت‌ها وارد شده را سبب کاهش دهد. هنگامی که سوئیه، خصوصاً در
پیش‌بینی نشود، مراکز هشدار مراکز محاولاً مثل مراکز هواپیمایی به فعالیتی به اعلان هشدار سوئیه می‌پردازند و تمام
شیب‌های تولید و رادیوی آن اعلان می‌دارد که از این طریق واقع می‌توان خسارت‌های جانی را در منطقه کاهش
دار (محمد خانی، 1388).
3. تیم‌های ماهی روی راب‌رویی مشابه با این پیدا کرده از هم جمله:
الف) کاهش ارزو برای سوئیه با موج‌سپری دوباره ای:
ب) اقدامات لازم برای کاهش اسباب و خرابی‌های جزئی در هزینه داده‌ای در دوره‌های جزیر و مدت
ج) تیم‌های ماهی در این خصوص اتکا به اهداف اقتصادی و اجتماعی، که از این طریق از گسترش اقتصادی و
پیش‌بینی مشارکت سوئیه (Murty and Bapat، 1999).
5) اقدامات اینی برای بازی ورتی‌های ناشی از سوئیه (1387).
4) هدف غن‌موزی‌بازی شریفی در رک منطقه آثار فراهم‌بردن شریف، مهندسی‌بازی‌های و تزئین‌فراوانی، و سراج‌می‌خواند، خدمت به مردم و رفاه
آن‌هاست. اقتصادی و استانداردسازی برای شهرها و سراسر گردشگری و برنامه‌ریزی شهری از اهداف دیگر است (مقدمی
317)، تهیه نمودید رزگ مقیاسی زئوموزی‌بازی شریف جاسی می‌تواند به‌روزسیرداری، ارزیابی مدیریت
مختاران شریف در اختیار برنامه‌ریزان و مسئولین شهری قرار دهد.
سیاسی‌سازی
این مقاله مستحق از طریق بحث در مورد مدل مشارکت زیست‌سازی دریایی، سازمان‌های و سازمان‌های گسترش
و طرح پژوهشی شماره 4107022 معاونت تحت‌پوشی دانشگاه تهران را در این، این رو به این
نها‌هاش که و قدردانی می‌کنیم.
منابع
ابراهیمی، بابک و هادی زارع. 1386. تک‌های کاربردی به در اجتناب اصلی ساواحل بندی ایران. نشر نیمی، 1390.
99.
حیدر زاده، محمد‌نژاد، پیروز دولت‌نژاد، محمد حجی‌زاده، ناصر ذکری؛ محمد مختتری. 1387. بررسی تاریخ‌چینه‌ی
سوئیه و ارزیابی پتانسیل سوئیه خیزی منطقه‌ی فروغ‌داد مکانی در سواحل دریای عمان. نشر نیمی، 1388.
98- 150.
نغی، نقفی، علی‌اصفه آکا کوچک. 1387. بررسی رفتار سوئیه دریایی تحت اثر میل سوئیه، جهان‌نی دندوئنی ملی
مهم‌تری. عمان، تاریخ برگزاری دانشگاه تهران، صفحه مجموعه مقالات.
صناحی‌پور، علی‌اصفه و کرامت‌نژاد افاضل. 1386. بررسی طوفان‌های غربی خراسان و تأثیر آن بر غن‌موزی‌بازی خط‌بند
ساحل‌های دریای عمان، سازمان زیست‌سازی کشور، مسیریت زیست‌سازی دریایی، محمد‌نژاد، نوروز. 1388.
24- 26.
نشريه تحليل فضائي مخاطرات محیطی، شماره 2، تابستان 1393

مقدمه: ابراهیمی، م. زمین‌شناسی شهری. انتشارات دانشگاه تهران.

Borrero, Jose C. 2013. *Solomon Island Tsunami on the West Coast of New Zealand.*

