تغییر آب و هوای شهر تهران

محمد سلیقه، دانشیار آب و هواشناسی، دانشگاه خوارزمی

دریافت مقاله: 94/6/12

چکیده:
تغییرات آب و هوای شهر تهران در جنوب کوههای البرز امروزه مواجه با سه نوع مخاطره آب و هوایی است. بهترین روش برای پیشگیری از این مخاطرات به عنوان یکی از راهکارهایی برای بهبود کیفیت زیست محیطی شهر تهران و بهبود زندگی ساکنان این شهر به‌شمار می‌رود. به‌طور کلی، این مخاطرات شامل تغییرات آب و هوایی، تغییرات در شرایط جوی و تغییرات در حالت‌های هوا می‌باشد. در این نظریه، تغییرات آب و هوایی به‌عنوان یکی از مهم‌ترین عوامل در تغییرات محیطی به‌شمار می‌رود.

کلید واژگان: مخاطره، آب و هوایی، شهر تهران، تغییرات، محیط زیست

Email: saligheh@khu.ac.ir
مقدمه

در شهرها بحران‌های آب‌هوایی را به سه دسته می‌توان تقسیم کرد. دسته اول بحران‌های ناشی از موقعیت جغرافیایی و شرایط طبیعی، دسته دوم بحران‌های ناشی از بادگیران جوی و دسته سوم بحران‌های ناشی از تغییرات آب‌هوایی جهانی. بحران در عرض جغرافیایی ۲۵ درجه شمال و طول ۵۱ درجه شرقی در دامنه‌ی جنوبی کوه‌های البرز و در غرب تغییرات بی‌کیفیتی در محیطی نیبیسته و محفظه از طوفان‌های سهمگین عرض‌های پایین قرار دارد. نمایی جنوبی بحران با بیابان‌های وسیع دشت کویر مرکزی ایران مجاور دارد. در ساختار کلی آب‌هوای بحران سه عملی کوه، بیابان و باد‌های غربی آن، هم‌زمان سه عملی کوه، بیابان و باد‌های غربی آن، هم‌زمان می‌باشند که ناحیه مسیله سویی تهران مزوده‌اند. در این شرایط، تغییرات کوه‌نشین فضای بحران و گونه‌های است که هم‌هم فضای آن را گزیند. در دانشجویانی که در این دسته‌ای انتقال تغییرات آب‌هوایی خیابان‌های شهری به چارگرده قسمی می‌شناسند، ال‌فی) شاخص‌های

تغییرات بحران سپس تغییرات جویی حرارتی در آن شده انتقال جرم‌های غربی تحت شرایط پایدار جوی که تشکیل و توزیع می‌کند. باد‌های محلی تزرع‌های بایین جوی، به طور چشک، گریز از جریان‌های غربی‌تر را به مقصد و ریزش محور سرد از مرزهای مجاور نیز می‌تواند به وجود آمدن گرما بخشی در ناحیه مخصوص قدیمی و نشانه ای‌ها دهد. این عوامل و تغییرات گرداشتهای حرارتی مربوط به جریان‌های غربی شتری طی شبه‌زمستان همان با استقلال شرایط سیستمی و اجرایی

ان و گردوبرخی می‌پوشاند. این با بخشی که با طوفان‌های سه‌درصد ۱۳۹۳ تهران را به‌وجود آورد.

در کل، عوامل ارتدکثر در غلظت آبی‌های خیابان‌های شهری به چارگرده قسمی می‌شناسند. ال‌فی) شاخص‌های

تغییرات بحران سپس تغییرات جویی حرارتی در آن شده انتقال جرم‌های غربی تحت شرایط پایدار جوی که تشکیل و توزیع می‌کند. باد‌های محلی تزرع‌های بایین جوی، به طور چشک، گریز از جریان‌های غربی‌تر را به مقصد و ریزش محور سرد از مرزهای مجاور نیز می‌تواند به وجود آمدن گرما بخشی در ناحیه مخصوص قدیمی و نشانه ای‌ها دهد. این عوامل و تغییرات گرداشتهای حرارتی مربوط به جریان‌های غربی شتری طی شبه‌زمستان همان با استقلال شرایط سیستمی و اجرایی

نابایداری گردوبرخی از نوع طوفان روزهای ۱۱ و ۱۲ خرداد ۱۳۹۳ تهران را به‌وجود آورد.

ساختارهای شهری (ساختارهای مسکونی، اداری، آموزشی، فرهنگی و...) در مناطق شهری عمیک به عوامل آب‌هوایی اضافه می‌کند که به عوامل علائمی می‌باشد که ناشی از منابع عوامل علائمی می‌باشد که N

1. Boundary Layer
2. Lifting Condensation Level
در کل، دمآهی شبه‌سئنه (مانند دمآهی کمیته) بیشر تحت تأثیر آثار شهری قرار می‌گیرد و توسعی شهرشینی می‌تواند و نتایج انسانی دمآهی کمیته شهرها را تشدید کند. به هنگام روز، به دلیل تغییرات و افتراق اجتماعی، شبه‌سئنه می‌تواند شهرها را تغییرات و افتراقات در حجم خیابان و ساختار شهرداریت می‌گردد و در نتیجه، تفاوت جدیدی بین رواد افزایش دمآهی شهری که حومه ایجاد نمی‌شود. نباید اثباتی روند افزایش دمآهی شهر به اثر توسعی شهرشینی نمی‌تواند چشمگیر باشد.

مطالعه اصلی مخاطرات آب‌و‌هوایی این شهر از جغرافیا، پایداری و از گرمایی جهانی ناشی می‌شود. در بحث، جمعیت این منطقه گزارش‌های بیش از افزایش تأثیر که آنها می‌کنند، رزگ‌دارهای یا اینهای تأثیرات شده است. ترخیر از جمله شهری روز، روزهای اطلاعیه و طوفان‌های تاکنینی در گذشته، در برخی از رویدادها سال مقدار عناصر از دولتی که می‌گوییم، فاقد دیدگاهی اقتصادی می‌باشد که زیستی را برای انسان تقریباً ناممکن می‌کند. با وجود این، به دلیل ضعف اطلاعات و آمار با محورانه بودن آنها، ارقام دقیقی از مرگومریها و خسارت‌های ناشی از آن منتشر نمی‌شود. این در حالتی است که از محدوده آب‌و‌هوایی بسیار نخست‌تران که اساتید موقوطی جغرافیا و سازمان‌های توپوگرافی آن‌ها نیز در تاریخ و شدن این پایداری‌ها و ایوناتوری‌های حاصل از آن تأثیر نیست. وسایلی که از کسب از قواعد سال در شهرونه رخ می‌دهد، با این حال شدت از اثرات مستقیمی با شرایط سیستمیکی حاکم این که تهیه سالانه بهبود از دوست روز داراد یا ایوناتوری است. حداکثر این ایوناتوری نسبت به اخیر پاییز و اولی زمستان رخ می‌دهد و افزایش ایوناتوری شدت آن ظاہر می‌شود. زیستی گردانی‌ها و صنعت به هم‌بودی و مردمیتی منفی و غلطان آن با شدت ایوناتوری راه‌باتن مستقیم دارد. ورش با بهداشتی و مداوم از حمایت عاملی است که می‌تواند، ضمن از بین بردن ایوناتوری‌ها، آب‌و‌هوایی نیز از محیط خارج کند. در زمستان با غلاب شهر تهیه از لبه غربی شهر و با جهت شمال غرب می‌وزد. این باد در بخش نسبی از شهر جهتی غربی پیدا می‌کند و سپس از طی این محدوده با جهت شمال غرب از جنوب شرق که از دیوار ساخته می‌شود با فصل نیز به بیشترین بادها از سمت شمال غرب و غرب وارد و از جنوب شرق شهر خارج می‌شود. در فصل نیز بادها و غرب وارد و پس از ورود به شهر به دو شاخه تقسیم می‌شود.

در فصل نیز بادها و غربی عجیب‌هستند.

اهتمام و ضرورت تحقیق از اینجا ناشی می‌شود که مرکز سیاسی کشور با جمعیت ده‌ها میلیون نفر امروزه بش از 200 روز از روزهای جوی دارد. محاصبه‌های تهیه در فضایی کمی که شامل خصایص بادآهی غربی و جنوب شرقی یا از جنوب و دریافتها و نیز رای باد را در بیشتر مواقع هوا سایر و تحرک می‌شود. نتیجه‌ای، این وضعیت منجر به پدیده‌ای خطرناک که در این هوا می‌گردد. در زمستان، به دلیل زیستهای از جنوب، به سایر ارتفاعات صاف و افتاتی است. همچنین، به دلیل تشغیب شبانه و وجود بر روز ارتفاعات شمالی و جنوبی اثر نرخهای تشیعی و جابه‌جایی بسیار معمول است. از طرفی با توجه به بی‌خبری‌های توپوگرافی و بی‌خبری‌های شرایط طبیعی در جغرافیایی و اینوناتوری‌های شهر تهیه دارد. وجود این آب‌هایی که به دلیل رفتار ناسالم شهر نیز از شرایط نامنایندگی است سپری می‌شود بادهای محلی نتوانسته هواهای آلوه را از شهر خارج کند. در پی همین، بخش بیشتر هواهای آلوه با زمان ورود به شهر تند میان شمال و جنوب شهر جابجایی می‌شود. در نتیجه و وضعیت موجود شهر ضرورت تحقیق بیش از پیش افزایش می‌یابد.
تغییر آب و هوا و مخاطرات

18

پیشینه مطالعه‌های صورت گرفته درباره شرایط جوی تهران فراوان است. همچنین، مطالعه‌های تغییرات آبی‌وهوایی و روی آن در سطح جهان و ایران موضوعی است که سیاسی از اقیم‌نشناسان در سطح جهان به آن توجه می‌کنند. راماسامی و همکاران (1998) و در اکثریت روند باران سطحی، بارش کل و تعداد روز خشک را در دوره 1980 ساله مطالعه کردند. آنها ی پربرداره که تغییرات در تعداد روز خشک از نظر آماری در بین از 0.5 درصد از ایسگان‌ها می‌تواند بوده است. کوربیس و همکاران (2009)، روند افزایش دما، نقطه‌شدن بیشتر ارایه می‌گردد با استفاده از سری‌های 112 ساله برای پوپنام و سری‌های طولانی‌مدت مطالعه کردن. آن برای نتیجه گرفتن که زمستان‌های خیلی سرد فقط تا نهایی قرن بیست و یکم رخ داده است در حالی که زمستان‌های گرم روند افزایشی را نشان می‌دهد. ضیاتویان و همکاران (2003) به دسته‌بندی نوع و روند بارش در شهر زنجان طی یک دوره آماری 45 ساله برداختند. آن برای بررسی معنی‌دار بودن روند از اکثریت نکات استفاده کردن و به این نتیجه دست یافتن که بیشتر این‌گونه‌ها دارای روی کاهش‌هستند.

بررسی‌ها نشان می‌دهد که 55 سال اخیر تغییر کرده است. این تغییر از نوع نوسان‌های کوتامد اقلیمی و روند است. تغییر مذکور در سری‌های مربوط به دما سالانه و هماهنگی حداقل و حداکثر سالانه بسیار در اواخر دهه 1970 مشهور است. در بررسی‌های زمستان‌های مربوط به عصر بارش، نشان داده شده است که بیشتر تغییرات احتمالی از نوع نوسان‌های کوتامد ابی‌وهوایی و بدون روند معنی‌دار است. تغییرات از نوع روند بارش عنصر دما سالانه دمای حداکثر و حداکثر سالانه افزایشی و در چند میتود به است. در این بین، پیشنهادی افزایش بارش دما سالانه و دمای حداکثر سالانه در سطح دنیا به است. اما تغییرات سری‌های مربوط به بارش مستقل از سایر سری‌های زمستانی عمل کرده و نوسان‌های ی پربرداره داشته است. بیشترین تغییرات ناگهانی در سری‌های مربوط به بارش سالانه و فصلی می‌یابد است (حجازی زاده و همکاران، 2018).

اینگونه از مباحث بسیار مهم درباره‌ای آبی‌وهوایی مناطق گوگان‌گویان بی‌الفصل و تغییر آن به صورت وضعیتی برگشت‌نام‌نیست که بسیاری از محققان به ابعاد گوگان‌گویان این مهم پرداخته‌اند. یکی از مهم‌ترین پیشنهادات به تغییر در عناصر اقیمی به وزه دما و بارش مناطق گوگان‌گویان است. به هم‌خوردنی‌اند که این‌گونه بسی شده متوسط درجه حرارت کریم زمستان روند افزایشی داشته باشد (IPCC, 2001). به طوری که در سال 2001 Dracup et al., هیئت بین‌مللی تغییر اقلیمی گزارش داد که این اقیمی در حال تغییر و گرمایی جهانی در حال زیر است (Detinger et al., 2003: 312 از طرفی، احتمال وجود روند معنی‌دار در یک سری زمستان بارندگی به نتیجه‌گیری نمی‌تواند دلیل قاطعی بر موقعیت تغییر اقلیم در یک منطقه باشد، بلکه رژیم رختگی آن را روی یافته آن اهمیت موضوع بررسی‌کنی و کیفیت دما و بارش است که توسط تحقیقات چنگداکه کشت خشک و بارش بار و شرایط باریخه زمستان تأثیر می‌گذارد و در مطالعات عالی چنان ضروری انتخاب‌نام‌نیست. در پیشینه اقیم‌شناسی دمای تناوب مطالعات فراوانی درباره اقیمی و تغییرات آن در مناطق گوگان‌گویان صورت گرفته است. بسیاری از مطالعات یک محوریت بررسی و تحلیل رفتار بلندمدت دما و بارش و تغییرات آن در دهه‌های روند افزایش منتوسط دما و مخاطرات صورت گرفته و روش‌های آماری شاخص و یک.

Ramasamy
نشان داد که روند دمای مکانی افزایش شد داشته، اما روند دمای مکانی دارای چیزی به مانند بود است.

Marengo et al. 2008:

همچنین، مطالعه مقایسه‌ای بین روندهای دما و باد در نهار و ورایین طی یک دوره 40 ساله انجام شد. این مقایسه نشان داد که هر دو دما و ورایین در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌شوند، در نهار و ورایین می‌تواند دمای افزایش دیگری داشته و در مناطقی که باد و باد در نهار و ورایین ایجاد می‌ش�ین الکل این تحقیق بررسی معنایی بررسی تغییرات اقلیمی شهر نهار است که در سال‌های آخر بارزتر شده است.

سؤال‌ها و هدف کلی این تحقیق بررسی مخاطرات اقلیمی شهر نهار است که در سال‌های آخر بارزتر شده است.

تغییرات اقلیمی در نهار باید در شرایط جوی و غیر جوی در آن مناسب برای تهیه آب و گازی (موادی که مالاً مقیاس نسبت که در تعبیری توسعه شهری به وجود آمده‌اند تغییرات در مؤلفه‌های سیستمیکی می‌تواند این مخاطرات را از‌سرکن. هدف این پژوهش بررسی روند تغییرات مؤلفه‌های سیستمیکی است که تحت تأثیر گرمایش جهانی و توسعه شهری دچار تغییرات شد. بر اثر تغییرات اقیمی در جغرافیای نهار و افزایش ارتفاع LCL و تراز تراکم هوای مراتب ارتفاع باقی می‌ماند. ظاهراً این تغییرات باعث افزایش داشته و در هر نهار شرایط نهار افزایش باعث است. عوامل است. تغییرات همچنین باعث تغییرات حداکثری در دمای نهار و افزایش در سطح‌های خاصی که تغییرات جغرافیایی شهر نهار هستند.

سؤال‌ها اصلی این تحقیق با شرح زیر هستند:

1. تغییرات ارتفاع توئینتالی در تهران تحت تأثیر تغییرات اقلیمی چگونه است؟

2. تغییرات کلی شهر نهار چه تأثیرات ترمودینامیکی بر پیشگیری سیستمیکی دارد؟

3. تغییرات کلی شهر نهار چه تأثیرات بر میدان به و تندی و سرعت آن دارد؟
دیده‌ها و روش کار

تهران، شهری در ارتفاع متوسط ۱۳۰۰ متر از نظر شرایط آب‌و‌هوایی در بیشتر موارد هوایی آرام دارد. وجود وارونگی‌های دمایی فراوان به ویژه در دوره سرد سال و استقرار سامانه‌های پرشمار در زمستان، هاگی‌ها و احتمال بالای پایداری هوایی شاهراً است. به‌طور عادی غلبه با ترتیب بخاری و شریک هستند. یعنی این که به هوا خشک آبی آمیخته‌ای غرب و بادهای برخی آبی‌های شرق با داخل شر و در مراکز آن متراکم می‌گردند.

تهران در دامنه‌های جنوبی کوه‌های البرز در محدوده آب‌و‌هوایی واقع شده است که در تازه‌سازی از زمان تحت تأثیر سیستم‌های عرض‌های میانی و در پارسال دیگر متغیر از سیستم‌های راه‌بهای جغرافیایی قرار می‌گیرد. ناهمواری‌های نظامی شکل در اطراف تهران، ناشی یاده در الکلی آن دارد. کاستری شری که در آن محیط استان شدید مخاطرات آب‌و‌هوایی شده است. اگر وارونگی در فهرست غیر می‌تواند در تغییر آب‌و‌هوایی جوی شود، در محیط استان تهران به صورت مضاعف تا نگار خواهد بود. بهینه منظور بررسی موقعیت تهران در این منطقه جغرافیایی اهمیت دارد. شکل شماره ۱ موقعیت تهران را در جنوب کوه‌های البرز نشان می‌دهد. تهران از جهت شمال با دامنه‌های جنوبی البرز و از جنوب شرق با رشته‌کوه‌های بی‌پی‌پای حکم‌نشده است. استقرار در پناه این ناهمواری‌ها سبب شدید مخاطرات آب‌و‌هوایی شده است. این موقعیت جغرافیایی سبب شده جریان بادهای منطقه‌ای کمتر در تهیه‌های هوای تهران مؤثر باشند.
منبع: داده‌های ارتفاع زئوئنتاسیلی برای بررسی تغییرات آن تهیه شد. تغییرات ارتفاع زئوئنتاسیلی اساس و پایه تحولات آب‌وهوایی تهران است. به منظور بررسی وضعیت حركات عمومی، منابع، میانگین داده‌های بلندمدت حركات قائم لازم بود که این داده‌ها نیز پس از استخراج از سال ۱۴۹۵ تا ۱۴۱۴ بررسی شد و این مشخص شود در چه زمان‌های از سال حركات جوی تهران صعودی یا نزولی است. تغییرات این حرکات صعودی یا نزولی نیز در دو باره اول و دوم ارزیابی گردید.
روش بردارش داده‌ها تبدیل داده‌های خام به نشانه‌های فشرده‌تر است. تهیه نتایج و نمودارهای قابلی از این داده‌های خام، قابلیت تفسیر را برای آن‌ها امکان‌پذیر می‌کند. در این مطالعه تغییراتی بررسی گردید که در جابجایی مراکز پرداش حجت حاره، تغییرات محدودی است. تغییرات شرایط صعودی، تغییرات میدان باد بر اثر تغییرات شرایط باد، تغییرات زمان استفاده هوا بر اثر تغییرات نسبت به زمان استفاده، کانال‌های دشن، باد تهران، بارش اسیدی و فرونشست‌های اسیدی و افزایش دما ناشی از تغییرات جوی‌های شریک‌گذار بودند.

شرح و تفسیر نتایج

با توجه به موقعیت جغرافیایی تهران، تغییرات آب‌وهوایی نفوذ به آن تحت تأثیر شدید موقعیت شهر قرار می‌گیرد.
توسعه شهر در ابعاد فوق‌العاده زیاد آثار ناشی از جهود حرفه‌ای را در آن بیش از پیش نموداد ساخته است. آثار جهود حرفه‌ای حاصل تغییرات مهمی در شرایط آب‌وهوایی آن شده است. در این مطالعه، جابجایی مراکز پرداش حجت حاره، تغییرات شرایط صعودی، تغییرات میدان باد، تغییرات زمان استفاده هوا، کانال‌های دشن، باد تهران، بارش اسیدی و فرونشست‌های دما در سال ۱۴۱۴ نشان داد.

پایداری‌های حرارتی

پایداری حرارتی دینامیکی در دوره‌های گرم سال تهران ظاهر می‌گردد. در پایداری حرارتی هنگام سطوح زیرین، میانی و اولین ورود، هم‌گام می‌گردد. پایداری حرارتی در دوره‌های سردسال ظاهر می‌گردد. پایداری حرارتی در تهران با گسترش و نفوذ پرداش حجت حاره بر روی آن آغاز می‌گردد. با رشد باد در پرداش جوی آرام بر تهران مسلط می‌گردد و نفوذ‌های مرطوب نمی‌توانند این سد نیومند مستقر شده را کنار بزنند و وارد نیومند تهران گردند. شکل شماره ۱ که جابجایی پرداش حجت حاره در انتقال عرض جغرافیایی، در طی سال و استقرار آن را بر روی تهران نشان می‌دهد.
شکل ۲. موقعیت تهران در مواجه با پرورش جنوب حارهای: داده‌های میانگین بلندمدت ارتفاع ۵۰۰ هکتاراسکال (۱۹۴۵-۲۰۱۴); منحنی ۵۸۰۰ نشان‌دهنده پرورش جنوب حارهای است. با ابزار حرارتی با کستری آن بر روی تهران به وقوع می‌برند. منحنی ۵۹۰۰ زاویه‌نگارینی مری زمینی است که احتمال وقوع امواج گرمایی در تهران وجود دارد.

علاوه بر این با استناد آن به ویژه در ترازهای میانی و بالایی ورودی‌های جهانی، گرمایش ادیبیاتی‌که حاصل می‌گردد و رطوبت نسبی کاهش می‌یابد، به این صورت سطح LCL، یا سطح افزایش‌یافته احتمال وقوع بارش کاهش خواهد یافت. با تغییرات آب‌وسیله درجه‌های اخیر، زودرسی و تداوم پرورش جنوب حارهای در نیوار تهران مشاهده می‌شود. برخی شکل‌گیری‌های ایرانی پرورش جنوب حارهای را بیشتر همراه با گرمایش بی‌درد در تروروسفر میانی و گرمایش در در نزدیکی سطح زمین می‌داند (راتگ و وو. ۲۰۰۲). افزایش گرمایش جهانی به زودرسی و مداومت این پرورش‌ها بر روی تهران منجر به خواهد شد. نتیجه اینکه مخاطرات ناشی از پایداری‌های گرمایشی در حال افزایش هستند که منجر به افزایش دوره‌های خشک‌شدن شود. شکل شماره ۳ نشان می‌دهد پرورش جنوب حارهای با ورودی‌های منفی از اولین زمستان در عرضه‌ها میانی ایران ظاهر می‌شود و در اولین روزه به حداکثر ارتفاع زاویه‌نگارینی خود می‌رسد (میفیدی، ۱۳۸۶: ۸۹). برای بررسی تغییرات دادوی ابستاگی این پرورش در نیوار میانی شهر تهران به بررسی دو پایه زمینی ۵ ساله شامل پایه اول از ۱۹۴۸ تا ۱۹۵۲ (شکل ۴ اف) و پایه دوم از ۲۰۱۴ تا ۲۰۱۴ (شکل ۴ ب) برداخته شد. مقایسه این دو شکل بیان کننده این موضوع است که به‌تفاوت آسیوهای در این دو پایه زمینی رخ داده است:

۱. Lifted Condensation Level
شکل 3. پرفشانی جنب حاره‌ای با وریسیتی منفی از اواپل زون در عرض‌های میانی ایران ناحیه شده و در اواپل زونی به حداکثر ارتفاع زوئیتاسیلی خود می‌رسد (مفیدی، 1386).

شکل 4. پیشروی سالانه پرفشانی جنب حاره‌ای و موقعیت هزاران نسبت به آن در دو دوباره (الف) در باره‌ی سالی دوم (2010-2014) و (ب) در باره‌ی سالی دوم ارتفاع زوئیتاسیلی و دوره استقرار آن افزایش یافته و به عرض‌های بالاتر نیز گسترش دارد.

الف) ارتفاع زوئیتاسیلی در چهار سال از باره‌ی 5 سالی دوم (2010-2014) به میزان 100 متر افزایش ارتفاع دارد.

ب) تعداد روزهای لانگزونی برتر تغییر جنب حاره در نیوآن هزاران در باره‌ی 5 سالی دوم افزایش یافته است;

ج) پیشروی شمال‌ی شرقی برتر تغییر جنب حاره به عرض‌های بالاتر در باره‌ی 5 سالی دوم به‌سره‌شده است.

جدول 1. مقایسه تعداد گره‌ها در هر یک از ارتفاعات زوئیتاسیلی در عرض جغرافیایی 35 درجه شمالی

<table>
<thead>
<tr>
<th>باره‌ی زمستان (1948-1952)</th>
<th>باره‌ی تابستان (2010-2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گره‌های بالای 2000 متر</td>
<td>126 126</td>
</tr>
<tr>
<td>گره‌های بالای 1500 متر</td>
<td>126 126</td>
</tr>
<tr>
<td>گره‌های بالای 1000 متر</td>
<td>126 126</td>
</tr>
<tr>
<td>گره‌های بالای 500 متر</td>
<td>126 126</td>
</tr>
<tr>
<td>گره‌های بالای 250 متر</td>
<td>126 126</td>
</tr>
<tr>
<td>گره‌های بالای 125 متر</td>
<td>126 126</td>
</tr>
</tbody>
</table>

[DOI: 10.18869/acadpub.jsaeh.2.3.15]
تغییر آب و هوا و مخاطرات

شکل 5. محدوده زمایی استقرار شرایط صعودی و موقعیت تهران از آن در دو دهه (الف) در پایه 5 ساله اول (1945-1949) و (ب) در پایه 5 ساله دوم (2010-2014)، در پایه 5 ساله دوم محدوده زمایی شرایط صعودی از پایه الافزایش پایته است.

شکل شماره 5 نشان دهنده زمایی استقرار شرایط صعودی و موقعیت تهران از آن در دو دهه (الف) در پایه 5 ساله اول (1945-1949) و (ب) در پایه 5 ساله دوم (2010-2014) است. در پایه 5 ساله دوم محدوده زمایی شرایط صعودی از پایه الافزایش پایته است. این افزایش به دلیل افزایش دما ناشی از گسترش محدوده جغرافیایی شهر تهران است. با گسترش شهر و افزایش مصرف سوخت‌های فسیلی، افزایش دما رخ داده و شرایط صعود افزایش پایته است.

پرفشار جنب حارهای و گرمایش جهانی

با مقایسه اشکال شماره‌های 4 (الف) و 4 (ب)، مشخص می‌شود که در پایه اول (1948-1952) پرانتفا جنب حارهای ارتفاع کمتری دارد و گسترش و دوره استقرار آن در عرض‌های بالاتر کمتر است. در حالی که در پایه دوم (2010-2014) که به دوره‌های آخر تبدیل شده است، گسترش ری به حال، ارتفاع و دوره استقرار آن افزایش پایته است. این تغییر در پرفشار جنب حارهای سبب افزایش دوره‌های خشک شده است. با گسترش دوره‌های خشک پوشش گیاهی اطراف تهران تخریب خواهد شد. با یک‌ها گیاهی در اطراف تهران به ویژه جنوب شرق، تعداد روزهای گردوگزاری و طوفان‌های تلخگون می‌زند. علاوه بر این، همی‌عوارض ناشی از جزیره حیراتی نیز با استقرار طولانی تر پرفشار جنب حارهای افزایش می‌یابد. شکل شماره 6 نشان دهنده موقعیت تهران با توجه به میانگین مراکز فشار در دوره‌های 1946-2014 از اندیشه سال میلادی نیا پایان آن است. در دوره گرم سال، تهران در نتیجه افزایش دما رخ داده که افزایش میانگین شهر تهران است. تأثیر کم‌فشار‌های جزیری است و در نتیجه است. پرفشار حاکم است.

پایداری پرتوی پایداری پرتوی در دوره سرد سال تهران ظاهر می‌شود. در پایداری پرتوی همی‌عوارض سطح زیرین، میانی و زیرین وردسپهر سرد است. هوای سرد در این دوره به دلیل سنگینی قادیر به صعود نخواهد بود. شکل شماره 6 نشان دهنده

[DOI: 10.18869/acadpub.jsaeh.2.3.15]
شکل 6. موقعیت تهران با نوشه به منابع مراکز فشار در دوره‌های 1945-2014 (از ایام سال میلادی تا پایان آن). شکل نشان‌دهنده آن است که در دوره‌ی گرم سال، تهران در تراز ۸۰۰ هکتوباسکال (که ارتقاء منابع شهر تهران است) تا نود هزار و پنجاه هزار و پنجاه دهه در دوره‌ی سرد سال در تراز ۸۵۰ هکتوباسکال تحت تأثیر پرفشارهای خارجی است. پرفشارهای سطح هیبرنوس نسبت به تهران یکباره، پرداخته و پرداخته با نشان‌دهنده است.

شکل 7. تهران در یک ماحیط نیمیسته واقع شده که ارتفاعات البرز دیواره‌ی شمالی و کوه‌های محصوری بین شبهایی شرقی تهران یکباره، پرداخته و پرداخته با نشان‌دهنده است. تهران چندر سنگفرش نیست. به همین دلیل آب‌هوای تهران از آرامش و سکون بیشتری برخوردار است.

شهر تهران در یک محیط نیمیسته واقع شده است (شکل 7). ارتفاعات البرز دیواره‌ی شمالی و کوه‌های محصوری بین شبهایی شرقی تهران را تشكیل می‌دهند. در حالی که نواحی غربی و جنوبی تهران چندان مرتفع نیست.

در نتیجه، سدهایی کوهستانی شمال و شرق منبع خروج مواد را پایین می‌گذارد که پاده‌ی غربی آنها را به داخل فضای شهر اوردیده. به همین دلیل، آب‌هوای تهران آرامش و سکون بیشتری از مناطق مجاور خود دارد. ویژگی‌های توبانگی تهران از دلایل مهمی است که در زمان تشكیل پایداری‌های برودنی سبب افزایش آلودگی‌های جوی می‌شود.
تغییر آب و هوا و مخاطرات

گرهیهای شرقی تهران چندان مرتفع نیست که بتواند در مقابل بادهای غربی عامل صعود باشد، اما به دلیل پایین بودن تراز اورانی در محیطهای کردنی اند آب‌دیگری و جلوگیری از جریان موجود این مخاطرات ناشی از آب‌دیگری هوا عبارتند از بازیابی اسیدی، کاهش مدیداند، افزایش اورانی، افزایش تنش‌ها و میماتی‌ها.

تشکیل

وٜٛ ٞبی ؿشلی تٟشاٖ چٙذاٖ ٔشتفغ ٘یؼت وٝ ثتٛا٘ذ دس ٔمبثُ ثبدٞبی غشثی ػبُٔ صؼٛد ثبؿذ، أب ... اتفبق هی افتذ. ًیوِ ی ضوبلی تْشاى ثیشٍى اص لایِ ی ٍاسًٍگی لشاس گشفتِ است ٍ هشکض تْشاى دس صیش لایِ ی ٍاسًٍگی لشاس داسد.

وازدگی جوی در تهران

در تهران بیشتر از ۹۰ درصد وارونگی‌های در ارتفاع کمتر از ۵۰۰ متر اتفاق می‌افتد. بنی‌این‌که در بیشتر موارد نیمی شمالی تهران بیرون از لایه وارونگی قرار می‌گیرد و مرکز تهران است که در زیر لایه وارونگی قرار دارد. در این جا به علت ضخامت کم انیمیت در زیر لایه وارونگی، شدت آب‌دیگری بیشتر از جاهای دیگر، حتی جنوب تهران، است. شدت وارونگی‌ها در دوره‌ی سرد بیشتر از دوره‌ی گرم است. در بیشتر صحیح‌های زمستان دو پدیده ناشی و سینوپتیک با هم ترکیب شده و هوا به سیار آب‌دیگری ایجاد می‌کند (شکل ۹).
بررسی طوفان روزهای 11 و 12 خرداد 1393 تهران

در این درو، نفوذ هواهای سرد در سطوح میانی و بخش‌های سبب افزایش توربولانس‌های جوی شد. هواهای گرم تر از هواهای پایین‌تر، باعث می‌گردند توربولانس‌های جوی در این مراحل افزایش یابد. این افزایش می‌تواند باعث نیروی از سمت جنوب شرقی توربولانس‌های جوی شود. در این مراحل، حواشی و بادهای خشک و خنثی‌تر تفکیک گیرند.

شکل 10: تشدید اختلاف دما به سمت زمین و ترارشی بالایی سبب افزایش حرکات قائم شده است.

بادها با سرعت بیش از 4 متر در ثانیه برای تخلیه آلاینده مناسب است. با توجه به اینکه سکون هوا در دوستان نیز بیشتر از مراحل ابتدایی در شرق تهران بیشتر بوده و باران ر启动 برای آلودگی آن باعث می‌گردد. شکل شماره 11 نشان می‌دهد. جریان‌های هوا تحت تأثیر جریان‌های مرتفع تهران را نشان می‌دهد. جریان‌های هوا در ترارشی پایینی از اطراف تهران به سمت مرکز تحت تأثیر کم‌درجه تشکیل شده پایینی از جریان‌های مرتفع تهران به وجدت آمده. حرکت می‌کند و سبب ترارشی و تراکم ذرات آلودگی کننده در مرکز شهر تهران می‌شود. به این صورت مرکز شهر تهران به ویژه در شب‌ها، بالای‌تر از پیامون آن است.

شکل 11: جریان‌ها و در ترارشی پایینی از اطراف تهران به سمت مرکز تحت تأثیر کم‌درجه تشکیل شده پایینی از جریان‌های مرتفع تهران به وجدت آمده. حرکت می‌کند و سبب ترارشی و تراکم ذرات آلودگی کننده در مرکز شهر تهران می‌شود. به این صورت مرکز شهر تهران به ویژه در شب‌ها بالای‌تر از پیامون آن است.

جریان‌های جویی بر روی کوه‌ها و طبیعت تهران برای سیستم‌های پیامون در شمال شرقی تهران باعث می‌گردد. به این صورت سیستم‌های پیامون به ویژه در شمال شرقی تهران بالای‌تر از پیامون آن است.
جنوبی البرز شده است. این بادها در کانالهای به جنوب آن ایجاد می‌شوند. این بادها در جو افزایش می‌دهند و تأثیراتی روی هوا باد و هوا و مخاطرات را داشته و سبب تغییرات در دمای هوا می‌شود.

مرکزی و جنوبی امتداد داشت و سبب تعادل دما می‌شود. شکل شماره 12 ویژگی‌های این جریان هوا را نشان می‌دهد.

شکل 12 مجاورت دشت تهران با ناحیه مرتفع شمال آن. ایجاد بادها موجب کوه به دشت در سراسر حاشیه جنوبی البرز شده است. در این بادها در کانالهای به جنوب آن ایجاد می‌شوند. این بادها در جو افزایش می‌دهند و تأثیراتی روی هوا باد و هوا و مخاطرات را داشته و سبب تعادل دما می‌شود.

یک نواحی مرکزی و جنوبی امتداد داشت و سبب تعادل دما می‌شود.

شکل 13. ساخت و سازه‌های شمال تهران منعی برای انقلاب هوای سراسر حاشیه جنوبی البرز به کانالهای می‌گردد. با سرعت آن افزوده می‌شود مخاطرات آب‌وهوایی را افزایش می‌دهد.

بلندترین‌ترین در شمال شهر تهران سبب کاهشی از تنفیذ باد کوه به دشت می‌شود و از تنفیذ این باد به تغییر مرکزی می‌کاهد. در این میان، جریان باد در حیات‌های با حاشیه‌ها بند به بند کانالهای و سبب سلب آسیب رهگیران می‌شود (شکل 12).

باد غالب مهرآباد غربی و دوشان تبه شمال شرق است. در مجموع بادهای غربی آب‌وهوای تهران را تنظیم می‌کنند. جهت باد در هر دو استیکه حاکی از آن است که استقرار می‌تواند منبع آلبالند در غرب تهران سبب آلودگی هوا می‌شود. با توجه به اینکه در شرق تهران هم بادهای شرقی غالباً هستند، هر دو جریان مواد آلبالند را از هر طرف به مرکز شهر می‌آورند و مرکز شهر پتانسیل آلودگی بالایی دارد.

کانالهای شدن باد در تهران.

از آنجا که باد غالب در تهران غربی است، ایجاد ساختارهای بلند و چند طبقه و متراکم در حاشیه خیابان‌های غربی - شرقی افزایش سرعت باد و اصطلاحاً کانالهای شدن باد را در پی دارند. آرایش سدهای کوهستانی سبب شده است که بادهای محلی نیز در تهران پوزنند. برای نمونه، در شب‌های نسمت کوه‌های شمال تهران به طرف مرکز شهر اورده می‌شود. اما با توسعه ساختارهای بلند مسیر ورود این جریان‌ها مسدود شده و کانالهای شدن آن‌ها درون خیابان‌ها تغییر آب و هوا و مخاطرات...
نشریه تحلیل فضایی مخاطرات محیطی، سال دوم، شماره 3، تابستان 1394

فاریعی می‌یابد. شکل شماره 14 از افزایش کالایی‌های شدن یاد را در محیط شهروی نشان می‌دهد. بر اساس این
شکل، بر اثر کالایی‌های شدن یاد سرعت آن تا 20 درصد پیشتر از سرعت اولیه افزایش می‌یابد.

![شکل 14: توزیع ساختمان‌های بلند و هم‌مریز و رودها را مسیر مواد غذایی می‌کند و کالایی‌های شدن آن‌ها درون
خیابان‌ها افزایش می‌یابد. این شکل کوپی از افزایش کالایی‌های شدن یاد را در محیط شهری نشان
می‌دهد. بر اثر کالایی‌های شدن یاد سرعت آن تا 20 درصد پیشتر از سرعت اولیه افزایش می‌یابد.](image-url)

بارش اسیدی و فرونکست‌های اسیدی

آب برای از جذب اکسیدهای گازی و از موجود در کیفیت به دارای اسیدی تبدیل می‌شود. افزایش اسیدی بر سطح
خاک ریزش و آن را اسیدی می‌کند. با اسیدی شدن خاک تجزیه و تحلیلی مواد آلی به مواد غذایی در خاک صوت نمی‌گیرد. بر اثر ریزش باران اسیدی به شاخه و برگ گیاهان به‌طور مستقیم آسیب وارد
می‌شود و توانایی نفوذی گیاهی کاهش می‌یابد.

بارش اسیدی سبب از بین بردن موم کوپیکول سطح برگ‌ها، نفوذ آب‌ده و بازی می‌شود. براساس اسیدی سبب
میزان تبخیر گیاهی و اسید‌های سلامی می‌شود. بارش اسیدی مواد غذایی مهم خاک مانند کلسیم، مواد وینیزم و
پتاسیم را می‌شوید و آن‌ها را از دسترس گیاهان دور می‌سازد. افزایش اسیدی با pH کمتر از 6/3 ناب‌بلند، اما مهای با
P_h کمتر از 3 و 2 نیز دیده شده است. همچنین، افزایش اسیدی فوق‌العاده سبب تکرار کردن و نیاز دارد. افزایش
اشدتهای اسیدی خشک سبب تجمع ذرات آلوگت در سطح زمین و لایه‌ای نیز می‌شود و با حرکت جنبی بخشی به
نفوذ متغیر شده و با تغییرات در لایه‌ای نیز می‌شود. افزایش اسیدی خشک سبب آلوگتی پیدا می‌شود. در افزایش
اسیدی خشک بیماری‌های نخفی، انوان سرطانی و ناراحتی‌های ریوی را در پی دارد.

روند تغییرات دما در تهران

تغییرات آبی در سطح جهانی سبب تغییرات در محیط طبیعی سیاره زمین شده است. شهرها بیشترین صدمه را از
این گمراهی دیده‌اند. افزایش دما ناشی از تغییرات آبی در نیم‌کره شمالی به سمت قطب افزایش می‌یابد. این
افزایش دما در درجه‌ای 5 درجه شمایی/5 درجه در درجه‌ای 75 درجه شمایی به 18 درجه می‌رسد (روستا
1394: 139). در تهران میان‌گین افزایش دما در سال‌های 24200 درجه سانتی‌گراد در سال بین سال‌های 1950 تا

2010 است.
نتیجه گیری
پژوهش حاضر مشخص کرد که تغییرات اقلیمی در شهر تهران انواع مختلفی را از مخاطرات اقلیمی تشکیل می‌کند.

اولین نوع مخاطرات تشدیدشونده مخاطرات ناشی از یاداده‌های حساسیت‌های تند پایداری و پایداری بروز و می‌شود. تغییرات اقلیمی سبب تشدید یاداده‌های حساسیت و افزایش دوره‌های استدلال پرفشار جنب حاره‌ها بر روی ایران است. یاداده‌های بروز و نیز، که با این‌ورزش‌های نیازی همراه است، در این میان تشدید
می‌یاد. این تغییرات به ویژه برای کلان‌شهری به طور مثبتی در نظر گرفته شد که از نظر جغرافیایی کمتر بالایی‌پذیر

است. عدم پیش‌بینی منفی، افزایش پیش‌بینی استیلی را در پی داشته است. از تهران، عوارض گرایش‌پذیری شهر را از

دسترس بادهای محلی و منطقه‌ای دور نگه داشته است. در مدت طولانی از نظر بی‌فاشی گرفته شده جنب حفاری

شهر با یکدیگر جوی همراه است. از این رو، از دیدگاه اقیانسی، خیابان و غیر جوی در آن مناسب برای

تهیه‌گذاری کلان‌شهری اجتماعی نیست که در تغییرات توزیع شهری پیدایش آمد. عوامل انسان مشائی بیبی

تشکیل جزیره حزرتی، افزایش ارتفاع LCL و ترکیب ترمار تراکم هوا به ارتفاع بالاتری انقلاب داده است. تغییر میدان

باد شهرو، تشکیل توربولاویسیتی جوی و تشکیل سیگنال‌های نرم‌بندی‌گری از آتشفشانی شیرته شهر تهران است.

کالایه‌ی شدن باعث تغییر ویکی‌دیگر از عوارض بلندتری سازی در این شهر است. از آن‌جا که باد غالب در تهران

غیرب، ایجاد ساختمان‌های بلند و جنگ طرف و مترکم در حاشیه‌ی خیابان‌های غربی - شرقی افزایش سرعت باد و

اصطلاحاً کالایه‌ی شدن باعث را را بر دارید. افزایش سه‌ها کوهستانی سبب شده است که فاقد بادهای محلی نیز در تهران

بوزند. برای نمونه، در شبه‌ی نسبی کوه‌های شمال تهران به طرف مرکز شهر احترم می‌آم. اما با تغییرات ساختمانی‌های

بلند، مسئول ورود این جریان‌ها مسید شده و کالایه‌ی شدن آن در خیابان‌های افزایش می‌یابد.

در سال، تغییرات اقیانسی تهران سبب افزایش دمای میانگین. درجه سانتی‌گراد بین سال‌های 1950 تا

2010 شده است. در سال، ضریب افزایش دما در گرم‌ترین ماه 1372/20 درجه سانتی‌گراد است که مقادیری از میانگین

افزایش سالانه کمتر است. این ضریب افزایش دما در سردترین ماه به 1370/20 درجه سانتی‌گراد در سال می‌رسد که از

میانگین افزایش سالانه کمتر است. مقایسه‌ی افزایش دما در ماه‌های سال نشان می‌دهد که افزایش دما در ماه‌های

میانه بیشتر از ماه‌های بیش‌پایین دمای.

منابع

حججیزه‌ی زاده، زهر و نادر پروین غیبری، 1388. بررسی تغییرات دما و بارش تهران طی نیم قرن اخیر، جغرافیا و برنامه‌ریزی

منطقه. 1:4144-1:58.

حججیزه‌ی زاده، زهر و نادر پروین غیبری، 1388. بررسی تغییرات دما و بارش تهران طی نیم قرن اخیر، جغرافیا و برنامه‌ریزی

منطقه. 1:4144-1:58.

میان‌های تغییرات بازخوانی‌های لوفی و سالانه استیگا که در جغرافیای ایران بررسی شده است. از جوی‌های گرو‌هایی به آب‌های کم‌مصرف

میان‌های تغییرات بازخوانی‌های لوفی و سالانه استیگا که در جغرافیای ایران بررسی شده است. از جوی‌های گرو‌هایی به آب‌های کم‌مصرف

سیستم‌های بسته. مجله‌ی ثبتی، 243: 65-57.

رنج سعادت ابادی، عباس غیبری، 1388. بررسی تغییرات میانگین‌های دما و دما در کلان‌شهر تهران ناشی از توزیع‌شنده شهری.

فیلم‌های لندی‌گیری جغرافیایی. 206-208.

روستای ایران. 1391. اثرات گرایش‌های جهانی بر توزیع‌گیری اقیانسی اقلیم شمالی و ارتباط آن با بارش ایران. رسانه‌ی

دکتر، دانشگاه تهران.

شرکت آمر ایران، 1383. راهنمای کاربران، جلد دوم، تهران، مرکز فرهنگی انتشاراتی حضوری: 532. for SPSS 6.0.

Windose.

عذیز، مقدم و محمدرضا رفیعی، 1387. مطالعه‌ی تغییر اقلیمی در سواحل جنوبی دریای خزر به روش من – کنرادی.

مجله‌ی پژوهش‌های جغرافیایی. 42-67.
عساكره حسين. 1383. تحليلي امارات بر تغييرات ميانگين سالانيه دماي شهر زنجان طي دهه‌هاي اخير. مجله تياور,

22-23-24

کاويلى محمدضاى و حسین عساكره. 1382. بررسى اماراتي روند بلندمدت بارش سالانيه اصفهان، سومين كنفرنس منطقه‌ای و اولين كنفرنس ملی تغييرات اقليمى. دانشگاه اصفهان، ۲۵۱-۲۶۰.

کنیرایى بروجردى، پیام: سهارى حجاج و يرپسا ايران زاد. 1384. بررسى روند تغييرات بارندگی در ايران طي دور و 1389 در دانشگاه آزاد اسلامى واحد علوم تحققيات، رسالهى دكترى هواشنسي.

ميفدي، عباس. 1386. بررسى گردش جوی ناپاكتمى در جنوب غرب آسيا و ارتباط آن با پارشى ناپاكتمى فلات ايران، رسالهى دكترى اپوهى شناسى، دانشگاه تركيب معلم تهران.

ضيابانى، صادق: امیر شاهرخ و حسین علیزاده. 1383. بررسى تغيير نوع و روند بارش در شهر زنجان، دومين كنفرنس ملي دانشجوى م سابع آب و خاک، دانشگاه شيراز: 1-8.

ضيابانى، صادق و امیر شاهرخ حسبعلیزاده. 1383. بررسى تغيير نوع و روند بارش در شهر زنجان، دومين كنفرنس ملي دانشجوى م سابع آب و خاک.

http://www.azarwater.ir.