آشکارسازی تغییرات بارش‌های حدی و نسبت دهی به تغییرات اقلیم با استفاده از روش استاندارد انگشت نگاشت بیپنه (مطالعه موردی: جنوب غرب ایران)

توفیق سعیدی، دانشجوی دکتری آب و هواشناسی، گروه جغرافیایی طبیعی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی، تهران، ایران.

بهلول علی‌جنانی، استاد آب و هواشناسی، گروه جغرافیایی طبیعی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی، تهران، ایران.

شیرین رضایی، دانشجوی دکتری آب و هواشناسی، گروه جغرافیایی طبیعی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی، تهران، ایران.

کاربرهای مدیری، استاد بارش و اقلیم، گروه جغرافیایی طبیعی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی، تهران، ایران.

چکیده

هدف از این تحقیق، تبعیض سهم اثرات محورکهای مختلف تغییرات اقلیم بر تغییرات بارش‌های حدی جنوب غرب ایران می‌باشد. محدوده مورد مطالعه شلیک ده‌های آبیز می‌باشد. نموده‌هایی به‌عنوان جهش‌های جغرافیایی (APPHRODITE) به‌عنوان مشاهده‌های جغرافیایی 44 تا 52 درجه و درجه‌های غربی و شرقی با استفاده از روش آنالیز میدانی و با استفاده از روش نزدیک‌ترین همسایگی، میانگین سطوح منطقه‌های مورد مطالعه بین طول جغرافیایی 48 تا 50 درجه و عرض جغرافیایی 30 تا 32 شمالی محاسبه گردید. سهم محرک‌های خارجی، پدیده تغییر اقلیم شامل اثرات تکیی انسانی و طبیعی (NAT) و اثرات جدایگان به‌وجود آمده (ALL)، اثرات جدایگان طبیعی (GHG) گلخانه ایBR تغییرات بارش‌های حدی منطقه‌ای با استفاده از روش انگشت نگاشت بیپنه آشکارسازی و نسبت دهی برای اولین بار در ایران در این پژوهش مورد بررسی قرار گرفت. نتایج به دست آمده نشان می‌دهد که سهم سگیتال اثرات جدایگان به‌وجود آمده تغییرات بارش‌های حدی جنوب غرب ایران طی دوره آماری 1395-1400 (الس) در تغییرات بارش‌های حدی اثرات جدایگان طبیعی (GHG) با روش APHRODITE نسبت دهی برای 1401/1402 تا 1405/1406 (تسدیل) و 1406/1407 تا 1407/1408 (تسدیل) و روش APHRODITE نسبت دهی برای 1408/1409 تا 1410/1411 (تسدیل) و روش APHRODITE نسبت دهی برای 1411/1412 تا 1412/1413 (تسدیل) گردید.

واژگان کلیدی: آشکارسازی، نسبت دهی، انگشت نگاشت بیپنه استاندارد، بارش‌های حدی، جنوب غرب ایران

1. نویسنده مسئول

Email: tofigh_sadi@yahoo.com
مقدمه

فشار بخار اشباع انسكفر 1 با افزایش دما بر اساس رابطه ترمودینامیک کلازیوس-کلاورون 2 افزایش می‌یابد. از آنجا که اندازه‌برداری رود رطوبت نسبی، تغییر وسیعی داشته باشد لذا افزایش حجم گنجایش رطوبت انسکفر گردیده. به تبع آن، به دلیل اینکه بارش‌های حاد به طور عمدی به دسترس بودن رطوبت وابسته می‌باشد بنابراین بارش‌های حاد افزایش خواهد داشت. (Allen و Ingram, 2002) شاخص نشان می‌دهد که اثرات انسانی، توزیع مکانی بارش را در نواحی مختلف کره زمین تغییر داده است و بارش در عرصه‌های جغرافیایی با عظمت تغییرات رطوبت انسکفر پایه است. (Min et al., 2008؛ Santer et al., 2007؛ Willett et al., 2013) مناطق کره زمین به طور متوسط تشدید شده است. (Alexander et al., 2006؛ Donat et al., 2012؛ Westra et al., 2013)

4 Optimal Fingerprinting

5 Scaling Factor

6 Coupled Model Intercomparison Project Phase III

۵۵
نتیجه تحلیل فضاهای مخاطرات محیطی، سال سوم، شماره 3، پاییز 1395

نشان داد که آتشسوزی‌ها باعث زمین‌پوشی‌های آتش‌سوزی‌های اثر مهی‌یابی انسانی و طبیعی (ALL) منجر به انرژی و اثرات سیستم‌های حیاتی می‌شود. در قسمت اولیه این مقاله با استفاده از آنالیز فضایی، مجموعه‌ای از گزارش‌ها و آمارهای مربوط به حوادث آتش‌سوزی در ایران، اثرات آن‌ها بر محیط زیست و سیستم‌های زیستی بررسی گردید. در نهایت، اثرات آتش‌سوزی‌های اثر مهی‌یابی انسانی و طبیعی بر محیط زیست و سیستم‌های زیستی بررسی گردید.

اثر آتش‌سوزی‌های اثر مهی‌یابی انسانی و طبیعی بر محیط زیست و سیستم‌های زیستی

 Dah et al., 2012 در اثرات آتش‌سوزی‌های طبیعی و اثرات آتش‌سوزی‌های اثر مهی‌یابی انسانی بر محیط زیست گزارش نشده است. این مطالعه با استفاده از آنالیز فضایی، مجموعه‌ای از گزارش‌ها و آمارهای مربوط به حوادث آتش‌سوزی در ایران، اثرات آن‌ها بر محیط زیست و سیستم‌های زیستی بررسی گردید.

اثر آتش‌سوزی‌های اثر مهی‌یابی انسانی و طبیعی بر محیط زیست و سیستم‌های زیستی

деه تغییرات دقیق مورد استفاده قرار گرفت. منطقه مورد مطالعه، محدوده جنوب غربی آفریقا بین طول جغرافیایی ۴۸ تا ۲۴ درجه شرقی و عرض جغرافیایی ۱۰ تا ۲۲ شمال می باشد. این منطقه با دلیل وجود حوادث آتش‌سوزی همچنین نظر کاورن بزرگ، دژ، خاک، زهربان، مردم و چاره، سیالات اخیر ممکن است با آن نظر تناسب و منابع آب و انرژی، نشان حیاتی و مهمی در کشور برخوردار است. سیل خیزی از همگان کارح حوضه‌های آبریز فوق به خصوص حوادث کاورن بزرگ پیدا و رشد بزرگ‌ترین سیلاب سالانه‌ای که در فوریت هام ۱۳۹۴ در حوضه مذکور شکسته شد. در رشد فوق پیشبرد، پیشرفت و جریان سیلاب در رودخانه‌های استان‌های ایلام، لرستان و خوزستان گردید. این اثرات در حوضه کاورن بزرگ و سد زای خود به دو جزء خداشته شده ۶ هزار مترمکعب در تمامی گردید که در سال‌های اخیر برای باین‌ها است. پیشرفت در این مترمکعب در تغییرات بوده است. علاوه بر سهم بال توجه بیشتری در سال‌های صعبات صنعتی مشترک خاصی هستند که بر اساس پذیرفته آنها، در پی بروز سیلاب‌های مختلف در منطقه داده بوده است. این اثرات به دو جزء: خسارت‌های جانی و مالی و سلامتی از سیلاب‌ها مربوط دارد. شناخت کامل این اثرات به کسب تغییرات عمکر اصلی بخوراند و مدیریت و برنامه ریزی برای تغییرات دقیق مورد است. مطالعه تغییرات اویلی تغییرات آن اثرات بر این تغییرات اقیان بوده و نشان داده است این اثرات تغییرات اویلی تغییرات اقیان بوده و نشان داده است این اثرات تغییرات اقیان بوده و نشان DOI: 10.18869/acadpub.jsaeh.3.3.65
دده ها یا روش کار

مطالعات آشکارسازی و نسبت دهی نیازمند داده های مشاهدات، شیبه سازی های سیگناهای و شیبه سازی های اجرای کنترل می باشند. شیبه سازی های اجرای کنترل برای تخمین تغییر پیش‌بینی درونی اقلیمی و همچنین نسبت نویز برای آزمون عدم قطعیت مورد استفاده قرار می‌گیرد. در پژوهش حاضر برای تهیه سری زمانی شاخه‌ای از پیشگاه داده‌های بارش (Rxi5day) و حداکثر بارش پنج روزه در سال (Rxi1day) از روزانه آورودیت2 در میکیس 25 کیلومتر بر علیه داده‌های مشاهدات رای بارش استفاده گردید. این پایگاه توسط مؤسسه تحقیقات هواشناسی سازمان هواشناسی کشور زاین و مؤسسه پژوهشی بشر و طبیعت در سال 2006 بنیا و باه گذاری شده است. هدف این پایگاه داده ایجاد یک پایگاه داده ورودی بارش برای آسیا با تکنیک مکانی بالاست. داده‌های افرودیت به هدف ارائه کیفیت داده‌های مشاهداتی سازمان مطالعات اقلیمی و هیدرولوژی بر اساس داده‌های مشاهداتی 0-12000 5 اینستاگه زمینی گستره اوراسیا، زمین، خاورمیانه و مونسون آسیا تهیه شده است. بررسی وضعیت توزیع اینستاگه زمینی در بهترین محدوده مورد نظر تحقیق حاضر در داده‌های افرودیت نشان می‌دهد که توزیع اینستاگه‌ها از وضعیت خوبی برخوردار است.2006 Yatagai et al. بر اساس ادعای یکپارچه و همکاران (2012) این پایگاه داده بر حالت حاضر، تنها یک محدوده بارش روزانه به تکنیک و دقت بالا در مقیاس قاره است. برای محاسبه تخمین‌برداری درونی اقلیم منطقه و شیبه سازی پایه‌ای اقلیم به محوری که مختلف پدیده‌های تغییر اقلیم‌ها در دولت نروژ سیستم زمینی NorESM1-M2 استفاده گردید. مدل مذکر از CMIP5 اسکی‌سازی شده در خاک‌های چهار مدل سیستم جامع اقلیمی (CCSM4) انتخاب شده است. این است که می‌تواند شاخص دانشگاه برای پژوهش‌های انتخاب‌گذاری ای‌آر-آتروسی و عناصر زمینی و یک درجه براز اقیانوسی و اجرایی یک پیش‌بینی (Bentsen et al.,2012) معیار اختیار مدل در در پژوهش، نتایج منتشر شده در پنجمین گرانش ارزیابی تغییر اقلیم برای ارزیابی مدل‌ها می‌باشد. بر اساس این نتایج که حاصل بررسی‌های سیلزمن و

1 Internal Variability
2 Annual maximum of 5-day consecutive precipitation amount
3 APHRODITE: Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources
4 Meteorological Research Institute of Japan Meteorological Agency
5 The Norwegian Climate Center’s Earth System Model (Bentsen et al.,2013).
6 Coupled Model Intercomparison Project Phase 5
7 The Community Climate System Model version 5
8 The University Corporation for Atmospheric Research
9 Fifth Assessment Report(AR5)
و همکاران (2016) برای شاخص‌های مختلف بارش و دما می‌گویند CMIP5 در رابطه با ارزیابی مدل‌های 5 برای مطالعه بارش‌های حدی NorESM1-M با شده‌ناری مناسب تری نسبت به R_{5x5day} و $R_{1/day}$ از کارایی بستگی به سایر مدل‌ها برخوردار است. پاسخ S به سیگنال‌های M مورد بررسی در این مقاله شامل اثرات تکیبی انسانی و طبیعی (NAT) و اثرات جداگانه کلیه گازهای گلخانه ای (GHG) و ALL است. تحقیق با بهره‌گیری از مقاله‌ای از Sillmann et al. (2007) و بررسی آن‌ها توسط GHG و سیگنال NAT و سیگنال CMIP5 خواندنی سود. منظور از سیگنال GHG شیبی سازی داده‌ها به کلیه اثرات بارش با بهتری مربوط به شرایط جهان واقعی است. در واقع داده‌های این بارش، مدل‌های جداگانه می‌باشند، به همین دلیل در برخی از مطالعات اقیмеی، می‌توان این نوع داده‌ها را بر اساس داده‌های استگاه‌ها (مطالعات) ریز مقياس نمود. سیگنال GHG، شیبی مربوط به اثرات طبیعی می‌باشد. به عنوان مثال نشان داده شده که سیگنال GHG به تحقیق اثرات فعالیت‌های انسانی و آشناشیانشان می‌تواند شیبی سازی داده‌ها را بازکند و سیگنال CMIP5 به دقت بیشتر اثرات گازهای گلخانه ای است و در مورد بارش، فقط شیبی سازی بارش GHG به تحقیق اثرات گازهای گلخانه ای را ارائه می‌نماید. علاوه بر داده‌های فوق، در این تحقیق، داده‌های شیبی بارش روزانه با پاسخ سالیانه با اقتباس صنعتی، برای برآورد تغییر پذیری درونی اقیمی منطقه به کمک کشور داشت. این شیبی سازی‌ها، رفتار منفی را (نظر بارش) در شرایط بودن اثرات گازهای گلخانه ای و دخالت بشر می‌باشد؛ به عبارت دیگر در مدل‌سازی آنها، شرایط کره زمین، از زمان پیش از اقتباس صنعتی، ناب در بیشتره نگاه به شود و سری علائم 50 ساله، بدون اضافه شدن هیچگونه اثر انسانی شیبی سازی می‌شود به همین دلیل به این نوع شیبی سازی به اجرای کلیل، نیاز گفته می‌شود. در روش اگنی و نگاه به بهینه، از این داده‌ها علاوه بر تخمین تخمین تغییر پذیری درونی اقلیم، برای همه نمونه از مستقل دیگری جهت استفاده در آزمون عدم قطعیت، استفاده گردید.

برگزی مقدار بارش از یک ناحیه به ناحیه دیگر، به تغییر زمین‌شناسی است. این رو، نوع پذیری زمین‌شناسی برگزی مقدار بارش در ناحیه به ناحیه دیگر به تغییر زمین‌شناسی است. این رو، نوع پذیری زمین‌شناسی

های مکانی بارش‌های حدی مشاهده می‌شود. تأثیر تغییر پذیری این اثرات با مقدار بارش قرار می‌گیرد. علاوه بر این، تغییر در موجودیت داده‌ها در زمین‌شناسی است می‌تواند ناهنجاری در زمین‌شناسی مربوط به مهم‌های مکانی (Wan et al., 2014) از عبارت نسبت سیگنال به نتیجه در بارش‌های حدی پایین است و بزرگ‌ترین مقیاس نمایی یا (Westra et al., 2013) می‌تواند نیروی را کاهش داده و احتمال آلودگی انسان‌سازی باعث می‌گردد که نتیجه می‌شود. این رویکرد در برخی از مطالعات گذشته بارش‌های انسانی در دیدن اثرات انسانی و نسبت دید مورد استفاده قرار گرفته است. (Zhang et al., 2013; Wan et al., 2014; Min et al., 2016)

1. Responses
2. Signals
3. Anthropogenic forcing alone
4. Natural forcing alone
5. Greenhouse gases forcing alone
6. Pre-industrial Control run simulation
7. Control Run
نمایی شبیه سازی های NAT, GHG و اجرای گیرنتل، به دلیل نبود داده های مشاهداتی معاونت آنها وجود ندارد. بنابراین یکی از روش‌های تبدیل نمودن مقدار مشاهدات و داده های مدل استفاده از بزرگ مقدار نمایی ای مثل میانگین (آیستگاه) ارجعیت دارد زیرا بر خلاف موضوع بررسی آناتوی اقلیم در دوره های آتی، در مبحث آشکارسازی و نسبت دهی، روتبرد ریز مقدار نمایی مسوم نسبت، بکه به جهت کاهش عدم قطعیت نتایج، رویکرد بزرگ مقدار نمایی داده ها مورد توجه می باشد. معمولاً ابعاد سلول ها را بزرگ مقدار نمایی داده ها، ۵.۵ درجه در نظر می گیرند که به عنوان نمونه می توان به مطالعات صورت گرفته توسط زانک و همکاران (2013) اشاره نمود. در تحقیق خاص، ابعاد بزرگ مقدار نمایی پایه توجه به وسعت منطقه، ۴×۴ درجه تعیین گردید. لذا کلیه سری های زمانی ابعاد از مشاهدات و شبیه سازی های مدل، به ابعاد مذکور باز نشده نمایی شدند. این کار به روش تبدیل‌گیری احتمالی و توسیع اکناف گردید.

روش های اندازه‌گیری شبیه سازی به همین، نیازمند مقادیر استاندارد شده نیست. توسط (2013) شده است. در تحقیقات گذشته، ابعاد مدل بودن آشکارسازی و نسبت دهی پیش‌بینی کننده، این روتبرد توصیه می‌گردد. مقادیر سری داده‌های مهندسی مورد بررسی و تزیین فیکس تابع توزیع T تجمعی، دارد که به وسیله هر لغات به‌طور مستقیم توزیع یا μ, مقیاس σ, توزیع ξ ساده یا ξ چک یا δ به شرح زیر مشخص می‌شود:

$$F(x;\mu,\sigma,\xi) = \begin{cases} \frac{\exp \left[-\exp \left(-\frac{x-\mu}{\sigma}\right) \right]}{1 + \exp \left(-\frac{x-\mu}{\sigma}\right)} & \text{if } \xi > 0, \\ 1 & \text{if } \xi = 0. \end{cases}$$

(1)

شاخه های احتمالی π مربوط به مقادیر قوی تر، به عدد ۱، نزدیک تر می‌باشد و مقادیر ضعیف تر، π نزدیک به عدد صفر خواهند داشت (2011). میانگین، سازی مدل بر ابزار تغییر کلی اقلیم درونی، مورد نیاز است لذا این روش به عنوان بهترین نتایج، انگل نیاز که به کاهش حجم داده های اجرایی کنترل دارد. این کار معمولاً به وسیله پرورش نمونه شبیه سازی کلی حاصل می‌گردد (Allen and Stott, 2003; Allen and Tott, 1999).

یکی از توابع آتی که همیشه خیلی صفر، دلایل بر پایی و از اطلاعات اضافی دارد، اساسی تابع ماتریس‌ها از استخراج داده‌ها نماید. توابع متعادل تجربی با مولفه‌های اصلی در ارتقای است. EOF نشاندهنده با کل ساختار فضایی

1. Up scaling
2. Remap
3. Nearest neighbor remapping
4. Climate Data Operators (https://code.zmaw.de/projects/cdo)
5. Probability Index
6. Fitting
7. Generalized extreme value distributions (GEV)
8. Cumulative distribution function (CDF)
9. Location
10. Shape
11. Empirical Orthogonal Functions
روش استاندارد انکشت نگاشت بهینه آشکارسازی و نسبت دهی

مقدار الگوی مجهول که بایستی محاسبه گردد و، نیز اقلیم در مشاهدات می‌باشد.

$$C_Y \equiv E(vv^T)$$

(4)

که نشان‌دهنده عملکرد اینکشت است که ممکن است به‌صرفه و اکتش نگاشت بهینه و نسبت دهی می‌باشد.

$$X(t,s) = \sum_{k=1}^{M} c_k(t) u_k(s)$$

(2)

که در آن، $$M$$ تعداد مدل‌هایی است که کار رفتار و تغییرات محیطی به یک روش تغییرات محیطی و اکتش نگاشت بهینه و نسبت دهی مهاجر و دیگران (2002) در همکاری با سایر گروه‌ها بوده است.

$$y = \sum_{i=1}^{m} X_i \beta_i + v = X\beta + v$$

که در آن، $$y$$ بردار رتبه ای مشاهدات، $$\beta$$ متغیرهای پاسخ‌های شیبی سازی مدل و اجزای $$\beta$$، $${\beta_i}$$ مقدار الگوی مجهول که بایستی محاسبه گردد و، نیز اقلیم در مشاهدات می‌باشد.

$$C_Y \equiv E(vv^T)$$

(4)

که نشان‌دهنده عملکرد اینکشت است که ممکن است به‌صرفه و اکتش نگاشت بهینه و نسبت دهی می‌باشد.

$$X(t,s) = \sum_{k=1}^{M} c_k(t) u_k(s)$$

(2)

که در آن، $$M$$ تعداد مدل‌هایی است که کار رفتار و تغییرات محیطی به یک روش تغییرات محیطی و اکتش نگاشت بهینه و نسبت دهی مهاجر و دیگران (2002) در همکاری با سایر گروه‌ها بوده است.

$$y = \sum_{i=1}^{m} X_i \beta_i + v = X\beta + v$$

که در آن، $$y$$ بردار رتبه ای مشاهدات، $$\beta$$ متغیرهای پاسخ‌های شیبی سازی مدل و اجزای $$\beta$$، $${\beta_i}$$ مقدار الگوی مجهول که بایستی محاسبه گردد و، نیز اقلیم در مشاهدات می‌باشد.

$$C_Y \equiv E(vv^T)$$

(4)

که نشان‌دهنده عملکرد اینکشت است که ممکن است به‌صرفه و اکتش نگاشت بهینه و نسبت دهی می‌باشد.

$$X(t,s) = \sum_{k=1}^{M} c_k(t) u_k(s)$$

(2)

که در آن، $$M$$ تعداد مدل‌هایی است که کار رفتار و تغییرات محیطی به یک روش تغییرات محیطی و اکتش نگاشت بهینه و نسبت دهی مهاجر و دیگران (2002) در همکاری با سایر گروه‌ها بوده است.

$$y = \sum_{i=1}^{m} X_i \beta_i + v = X\beta + v$$

که در آن، $$y$$ بردار رتبه ای مشاهدات، $$\beta$$ متغیرهای پاسخ‌های شیبی سازی مدل و اجزای $$\beta$$، $${\beta_i}$$ مقدار الگوی مجهول که بایستی محاسبه گردد و، نیز اقلیم در مشاهدات می‌باشد.

$$C_Y \equiv E(vv^T)$$

(4)

که نشان‌دهنده عملکرد اینکشت است که ممکن است به‌صرفه و اکتش نگاشت بهینه و نسبت دهی می‌باشد.

$$X(t,s) = \sum_{k=1}^{M} c_k(t) u_k(s)$$

(2)

که در آن، $$M$$ تعداد مدل‌هایی است که کار رفتار و تغییرات محیطی به یک روش تغییرات محیطی و اکتش نگاشت بهینه و نسبت دهی مهاجر و دیگران (2002) در همکاری با سایر گروه‌ها بوده است.

$$y = \sum_{i=1}^{m} X_i \beta_i + v = X\beta + v$$

که در آن، $$y$$ بردار رتبه ای مشاهدات، $$\beta$$ متغیرهای پاسخ‌های شیبی سازی مدل و اجزای $$\beta$$، $${\beta_i}$$ مقدار الگوی مجهول که بایستی محاسبه گردد و، نیز اقلیم در مشاهدات می‌باشد.

$$C_Y \equiv E(vv^T)$$

(4)

که نشان‌دهنده عملکرد اینکشت است که ممکن است به‌صرفه و اکتش نگاشت بهینه و نسبت دهی می‌باشد.

$$X(t,s) = \sum_{k=1}^{M} c_k(t) u_k(s)$$

(2)

که در آن، $$M$$ تعداد مدل‌هایی است که کار رفتار و تغییرات محیطی به یک روش تغییرات محیطی و اکتش نگاشت بهینه و نسبت دهی مهاجر و دیگران (2002) در همکاری با سایر گروه‌ها بوده است.

$$y = \sum_{i=1}^{m} X_i \beta_i + v = X\beta + v$$

که در آن، $$y$$ بردار رتبه ای مشاهدات، $$\beta$$ متغیرهای پاسخ‌های شیبی سازی مدل و اجزای $$\beta$$، $${\beta_i}$$ مقدار الگوی مجهول که بایستی محاسبه گردد و، نیز اقلیم در مشاهدات می‌باشد.
آشکارسازی تغییرات بارش‌های حدی و ...

72

به دلیل اینکه P، نویس سفید توزیع داده شده مستقل است این اعداد از اکثرین واریانس (محاسبه‌گر) بی‌دود

خطای خطی مربوط به \(\bar{\beta} \)، معنی \(\bar{\beta} \) به وسیله کمیتی سازی بارش مناسب دسته می‌آید:

\[
\begin{align*}
\text{ر}^T(\bar{\beta}) &\equiv (\text{PX} \bar{\beta} - \text{PY})^T (\text{PX} \bar{\beta} - \text{PY}) \equiv \delta^T \text{P}^T \text{P} \delta \\
\end{align*}
\]

و با توجه به \(\bar{\beta} \) در حداقل خواهی داشت:

\[
\bar{\beta} = (\text{X}^T \text{P}^T \text{PX})^{-1} \text{X}^T \text{P}^T \text{PY} = \text{F}^T \text{Y},
\]

در رابطه فوق منظر از F، "\(\text{F} \)" نگشت تکان‌نگاری مطمیم است می‌باشد.

در این تحقیق برای بررسی ترتیب نتایج پیشامدهای از روش آزمون ای‌بای واقعیت‌های ها استفاده گردید. این روش برای آزمون ای‌بای واقعیت‌های ها توسط روش انتخاب جدید طریقی هماهنگی خودکار خودکار، با استفاده از طریقی دارد یا خیر؟ و تسویه داده شد (Allen and Stott, 2003; Allen and Tott, 2009).

در حقیقت، محدوده این نتایج مانده‌های منبعی می‌گردد و در صورتی که رابطه‌های تغییرات از رگرسیون درون این محدوده قرار بگیرد، نتیجه می‌گیرد که نتایج از دقت قابل برخورد هستند.

در این تحقیق، سپس از ماحصل ضرابید مسبقه ساز مربوط به سیگنال‌های مورد مطالعه و مشخص مورد سیگنال‌های قابل آشکارسازی و نسبت دیه در تعیین تغییرات‌های احتمالاتی (PI) در محدوده طبیعی و تغییرات‌های نسبت دیه شده به روش آزمون ای‌بای و محدوده قرار در ضرابید مسبقه ساز مربوط به ضرب می‌شکل.

شرح و تفسیر نتایج

در شکل 1 (الف) نتایج مربوط به مجموعه اثرات کل عوامل خارجی انسانی و طبیعی با اصطلاحاً سیگنال ALL بر روز تغییرات سری زمانی ۵۵ ساله (Rx1day)، نشان داده شده است. مقایسه بین نتایج قابل پیوستگی که به کمک NorESM1-M و اجرای توانمند تجربی (EOF) در برازش داده‌های مشاهده‌ای افزوده و شیب سازی های مدل حاصل شد. این نشان می‌دهد که تعادلی از ضرابید با مربوط به سیگنال ALL به طور معناداری بزرگتر از صفر می‌باشد. بنابراین این اثرات کل عوامل خارجی انسانی و طبیعی در تغییرات‌های آشکارسازی شدند. همچنین فواصل طبیعی هم با تهای مذکر، شامل مقدار یک (1)‌ یا بیشتر بود که معنی که تغییرات شیب سازی روز (Rx1day) با تغییرات در مشاهدات جنوب غرب ایران همان‌گونه دارند. به عبارت دیگر علاوه بر آشکارسازی، نسبت دیه نیز صورت گرفته است. این نتایج با یافته‌های ماین و همکاران (2011) و زانگ و همکاران (2013) هم‌زمان است که از شیب سازی‌های مدل‌های CMIPT یا گفتار که آزمون اکثرین واریانس (کم‌تار) (CMIP5،) را به کار برده بودند، همان‌گونه وجود دارد. اما در بین همان نتایج (شکل 1–الف) نتایج متفاوتی نتیجه‌گیری به چشم می‌خورد و عملیات اینکه باعث در هم آنها می‌شود است؛ لیکن فواصل طبیعی ۵۰ درصد در برخی نتایج، شامل مقدار منفی می‌باشد، بنابراین تریبون واقعی‌های قابل قانون آشکارسازی می‌باشد. این اختلاف در میان نتایج مربوط به یک سیگنال مشابه، می‌تواند به دلیل وجود خطای تغییرات سازی های مدل‌بندی کار

1 Independent, identically distributed (i.i.d.)
2 Distinguishing fingerprints
3 Residual consistency test

[DOI: 10.18869/acadpub.jsaeh.3.3.65]
نتیجه‌گیری

 carácter principal
نتیجه‌گیری
در تحقیق حاضر به بررسی سهم اثرات عوامل انسانی و طبیعی سیستم قلمی کره زمین بر تغییرات سری زمانی بارش‌های حداکثر روزانه و حداکثر مجموع بارش پنج روز به سال در دوره آماری 2005-2011 در منطقه جنوب غرب ایران، به‌منظور استفاده از روش استاندارد انگشت نگاشت بهینه بردخته شد. نتایج بیانگر این است که پاسخ‌های سیستم GHG در جنوب Rx5day و Rx1day (ALL) بیان‌کننده گرایش بارش‌های نورCESM1-M مدل غرب ایران هماهنگی دارد و نشان می‌دهد. در نتیجه‌گیری، به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌تر، حذف این سایت‌ها و تغییرات در تغییرات بارش‌های جنوب غرب ایران برخوردار است و به‌منظور اثرات جدی‌ت
آشکارسازی تغییرات بارش‌های حداکثری و

شکل ۲: بهترین ضرایب مقیاس ساز برای سایگانال‌های ALL, NAT, GHG مربوط به Rx5day می‌باشند.

(کادر سمت چپ) و نتایج آزمون کیت باقیمانده‌ها (کادر سمت راست)
سیاستگزاری
از حمایت مالی و تخصصی مرکز اقلیم ایکس (APEC Climate Center) و همکاری نیم مطالعات تغییر اقلیم مرکز Dr. Francis Zwiers و Dr. Jaepil Cho و Dr. Yun Young Lee مذروده به خصوص از Dr. Xuebin Zhang دانشگاه ویکتوریا و راهنمایی در زمینه متداومی به کار رفته، تشکر و قدردانی می نماییم. از جنبه آقای دکتر ایمان پاپایان، بابی فراهم نمودن خیسی از داده های مورد استفاده از حمایتی جنب اقای مهندس شمسایی مدل عامل محروم و سیستم خانم دکتر ظهوری، مشاور محترم سازمان آب و برق خوزستان، کمال تشکر را داریم.

منابع

