ارزیابی استعداد بروز زمین لغشش‌های احتمالی در محدوده شهر تبریز

اپالافل قنبری، دانشگاه جغرافیا و برنامه ریزی شهری، دریافتی مخاطرات محیطی، سال چهارم، شماره 1، بهار 1316

پژوهش نهایی: 1395/06/22

1. ًَیسٌذُ هسئَل: Email: a_ghanbari@tabrizu.ac.ir

چکیده

ارزان با توجه به آماری کوهستانی، فعالیت تکنیکی و لرزه‌های زیاد، شرایط منفوع اقلیمی و زمین‌شناسی عمده شرایط طبیعی را برای طیف وسیعی از لغش دارد. قرارگرفتن در مقال دوم در بخش مبنای ایران، جمعیتی بالغ بر 1464 مگا، مخالفای گسل برگر، تبریز و روی داندن زمین لغش‌های مختلف در شهر تبریز این شهر را تبدیل به یکی از خط‌های مهم و پوری اجرا شده‌ای تابع شرکت‌های ایران در خدمات مهندسی زمین لغشش می‌کند. هدف مقاله حاضر: ارزیابی استعداد بروز زمین لغشش در محدوده شهر تبریز و به‌طور کلی پرداخت برای زمین لغشش در این محدوده است. در این راستا ابتدای زمین لغشش‌های رخ داده در محدوده مور مطالعه شناسایی شدند و با استفاده از تحلیل این داده‌ها در نرم‌افزار ILWIS و ZIB می‌توان از نظر مصرف و زیر میزان اشکال شناسایی و طیف بندی شدن. سپس با استفاده از مدل فازی- تایپس و تایپس میزان اهمیت معیارها و جزئیات معیارها در واحد‌های پیکسلی مشخص شد و در نهایت با تبیین مدل فازی- تایپس و تایپس و نتایج مشخصاتی در محیط نشان داده‌ای استخراج شد. نتایج حاکی از آن است که 6 درصد اراضی شهر در بهینه خطر بسیار بالا و بیش از

30 درصد اراضی آن در بهینه‌های سوخ متوسط باید بر اساس دانه‌ی و اکنون کلیدی: زمین لغشش، فازی- تایپس، ARC/GIS، تبریز.

Email: a_ghanbari@tabrizu.ac.ir
مقدمه

یکی از مسایل زمین‌شناسی و جغرافیا، بررسی از فعالیت‌های بزرگی رودخانه و محل زماننگاری از آنها است. در این مقاله سعی می‌شود تا از اصول و ابزاری که در شناسایی و بررسی زماننگاری از فعالیت‌های بزرگی رودخانه استفاده می‌شود آشنا شویم. در این مقاله سعی می‌شود تا از اصول و ابزاری که در شناسایی و بررسی زماننگاری از فعالیت‌های بزرگی رودخانه استفاده می‌شود آشنا شویم. در این مقاله سعی می‌شود تا از اصول و ابزاری که در شناسایی و بررسی زماننگاری از فعالیت‌های بزرگی رودخانه استفاده می‌شود آشنا شویم.
در پژوهشی با عنوان یپهنه بندی سختی و یپهنه بندی زمین لغزش در منطقه سرخون در استان چهارمحال و بختیاری با استفاده از
10 معمار شب زمین، جهت دانستن، پوشش زمین، قالب‌ها یا گلایی، شاخه فکنی، شاخه سبزی و درک، پوشش گیاهی،
بازش سالشانه، جنس زمین، قالب‌ها با راه‌های اصلی و قالب‌ها با رودخانه و با استفاده از مدل ترکیب خطی گیاه،
سبیم اطلاعات گرافیکی به یپهنه بندی زمین لغزش در منطقه پدیده برداخته شده است. نتایج این تحقیق نشان می دهد
28 درصد اراضی منطقه مورد بررسی در این پژوهش بالایی برای وقوع زمین لغزش هستند (کرم 1382).

در مطالعه ای با عنوان یپهنه بندی مناطق حساس به زمین لغزش با استفاده از الگوریتم فازی تایپسیس و سامانه اطلاعات
جغرافیایی (مطالعه موردی: استان لرستان) با استفاده از اطلاعات شب، جهت شب، قابلیت اراضی، کاربری اراضی، قالب‌های
گیاه و قالب‌ها از رودخانه و استفاده از مدل فازی تایپسیس برداخته شده که نتایج حاکی از کاربرد مدل فازی تایپسیس در
یپهنه بندی زمین لغزش است (هاشمی و همکاران، 1389).

در مقاله ای تحت عنوان بررسی کاربرد مدل GIS SINMAP در پدیده بندی خطر زمین لغزش (مطالعه موردی: جوزه آبخیز سد ایلام) با استفاده از مدل
SINMAP به یپهنه بندی در منطقه باد شده برداخته شده که نتایج تابع‌داری حاکمیت در
جوزه طالقان را نشان می دهد (خالدی، 1391).

در مطالعه ای خطر زمین لغزش در هر شب و پیشگیری از روش ابزارگان یپهنه بندی است. نتایج نشان می
دهد که عده ترین زمین لغزش ها در آب‌رفت‌های کلاژنری و محل تلاقی آندزیت و مواد رسی، لاهارها پامپسی و رسوبات
تخربی به وقوع می‌پیوندند. در ضمن فقط 19 درصد اراضی در محدوده باد شده در یپهنه به دست خطر قرار دارند (روستایی
و همکاران، 1391).

در تحقیقی دیگر با کاربرد منطق فازی شامل استراتا فازی، جمع جبری، ضرب جبری و فاصله کاما و استفاده از ۹ معیار در
جهت تحقیقی دیگر با کاربرد منطق فازی شامل استراتا فازی، جمع جبری، ضرب جبری و فاصله کاما و استفاده از ۹ معیار در
به یپهنه بندی خطر زمین لغزش در جوزه آبخیز سد ایلام برداخته شده است. نتایج نشان می دهد که ۵۷ درصد
اراضی در یپهنه به دست خطر بالا و خیلی بالا قرار دارند (نادری و همکاران، 1391).

در تحقیقی با عنوان بررسی تعداد عوامل ورودی در مقدار دقت شبکه مصنوعی برای یپهنه بندی خطر وقوع زمین
لغزش در حوزه آبخیز هزار ساختار ۴ تریتور ۳ تریتور در لایه ورودی و ۴ تریتور در لایه یخچال و ۱ تریتور در لایه خروجی با نسبت بالایی
۲/۰ به عنوان ساختار به یپهنه انتخاب شده است. نتایج حاکی از کاربردی ۳۵ درصد اراضی است (مرادی و همکاران، 1391).

در تحقیقی با استفاده از روش رگرسیون خطی به یپهنه بندی زمین لغزش در کشور که برداخته بر از میزان جهت
شیب، ضخامت حاکم، فاصله از آبآوره، کاربری اراضی و پوشش گیاهی استفاده شده است. پس از مقایسه نتایج یپهنه بندی با
نتایج پراکش لغزشی ها، نتایج نشان دهنده این است که این روش نتایج نسبتاً مناسبی دارد (Lee et al, 2010).

در پژوهشی با استفاده از مدل‌های ارزی اطلاعات، تراکم سطح، شیب، زمین شناسی، فاصله از رودخانه، پوشش گیاهی و
فاصله از جاده به یپهنه بندی خطر زمین لغزش در ترکیب برداخته شده است و به این نتیجه رسیده که مدل تحلیل سلسله
مراتبی کاربردی بهتری از دیگر مدلها برای یپهنه بندی خطر زمین لغزش در این منطقه دارد (Yalcin et al, 2010).
در پژوهشی با استفاده از یک مدل ترکیبی بر اساس زمینشناسی، زئومورفولوژی، داده های آماری و تاریخی و مدل اتومات سلولی و با استفاده از تصاویر ماهواره ای به ارائه شتاب‌هایی زمین لغش احتمالی در شیراز جهت تنظیم این پژوهش، مطالعه شده است. نتایج حاصل از این مدل در مقایسه با زمین لغش های رخ داده در مقاطع تاریخی رضایت بخش بوده است (2014) et al. Lucà.

با توجه به مطالب فوق می توان دریافت که بیشتر مطالعات زمین لغش در میانس های کلان و در محدوده جنوب های آیری است. این امر نشان می دهد که سلولی مدل های این مطالعات از روش های تجزیه و تحلیل دقیق میزین استفاده محدوده شهر تبریز، شناسایی عوامل و معیارهای مؤثر در رخداد زمین لغش ها در محدوده پای شرق و ترکیب و استخراج نقشه میزان استعداد راهبرد محدوده شهر تبریز برای بررسی انواع زمین لغش های احتمالی می باشد. برای دستیابی به اهداف تحقیق از روش فازی-تایپس و استفاده شده است.

دکمه ها و روی کار

محدوده مورد مطالعه این پژوهش کل محدوده شهر تبریز می باشد. شهر تبریز در شمال غربی ایران واقع شده و مرکز استان آذربایجان شرقی است. شهر تبریز به عنوان یکی از کلان شهر شمال غرب ایران با وسعت حدود 44498 هکتار (محمدرضا مشاریاری، 1391) در موقعیت جغرافیایی 46°14′ طول شرقی و 9°13′ عرض شمالی با ارتفاع متوسط حدود 1340 متر در جنگل ای به نام جلگه تبریز واقع شده است (زمانی، 1379). فلات اذربایجان که شهر تبریز در آن واقع است، نهایتاً از شمال به جنگل ای به نام جلگه تبریز واقع شده است.

دکمه ها و روی کار

محدوده مورد مطالعه این پژوهش کل محدوده شهر تبریز می باشد. شهر تبریز در شمال غربی ایران واقع شده و مرکز استان آذربایجان شرقی است. شهر تبریز به عنوان یکی از کلان شهر شمال غرب ایران با وسعت حدود 44498 هکتار (محمدرضا مشاریاری، 1391) در موقعیت جغرافیایی 46°14′ طول شرقی و 9°13′ عرض شمالی با ارتفاع متوسط حدود 1340 متر در جنگل ای به نام جلگه تبریز واقع شده است (زمانی، 1379). فلات اذربایجان که شهر تبریز در آن واقع است، نهایتاً از شمال به جنگل ای به نام جلگه تبریز واقع شده است.

در ضلع شمالی شهر تبریز به عنوان یکی از کلان شهر شمال غربی ایران به وسعت حدود 44498 هکتار (محمدرضا مشاریاری، 1391) در موقعیت جغرافیایی 46°14′ طول شرقی و 9°13′ عرض شمالی با ارتفاع متوسط حدود 1340 متر در جنگل ای به نام جلگه تبریز واقع شده است (زمانی، 1379). فلات اذربایجان که شهر تبریز در آن واقع است، نهایتاً از شمال به جنگل ای به نام جلگه تبریز واقع شده است.
این تحقیق از نظر جز تحقیقات کاربردی-توسعه ای و از نظر روش جز تحقیقات توصیفی-تحلیلی است. فرآیند تحقیق از 4 مرحله به ترتیب زیر تشکیل می‌شود.

مرحله اول: شناسایی لغزش‌های رخ داده‌اند در این مرحله ابتدا با استفاده از منابع مختلف از جمله تصاویر ما هوارهای عکس‌های هوایی، دستگاه موقعیت یابی جهانی (GPS) و پردازش‌های سناریوی زمین لغزش‌های رخ داده در داخل محدوده Global mapper, Google earth pro, Autocad map, ARC/ GIS مطالعاتی شناسایی شده و با استفاده از نرمافزارهای زئورفرنس شده و به‌طور ناظری به‌روز رسانی و نشان ساخته و استفاده در تحلیل‌های بعدی شد.

مرحله دوم: شناسایی و استخراج معیارهای مؤثر در زمین‌لغزش‌های محدوده مورد مطالعه و تهیه لایه‌های اطلاعاتی: در این مرحله با استفاده از مطالعات کتابخانه ای، نظرات کارشناسان آمر و از همیشگان اطلاعات زمین لغزش‌های رخ داده که در مرحله قبل تهیه شد با شناسایی عبارت و عوامل مؤثر در رخداد زمین لغزش‌های اکثریت شد. بررسی های نشان دادن که بیشتر زمین لغزش‌های رخ داده در تندی و نزدیکی گس脱‌ها، رودخانه‌ها و نیروی بادی در داخل لایه‌های اطلاعاتی در فرم‌های مختلف GIS تکمیل شد. به‌دین منعیت با استفاده از منابع مختلف از جمله نقشه‌های شهری، نقشه‌های 250000 توبوگرافی و عکس‌های هوایی نقشه‌های مربوطه تولید و زئورفرنس شد. سپس لایه‌های اطلاعاتی بوجود آمد و در مرحله بعدی تحلیل وارد نرم افزار زئورفرنیس شد و با روی هم گذری بیانیه لغزش‌های رخ داده مشخص شد که کدام معیارها که انتخاب شده در پرور زمین لغزش‌های مؤثر بوده‌اند. برای مثال بررسی های تهیه شده بررسی زمین لغزش‌ها در مجاورت 500 متری کنار رودخانه رخ داده است. ضمناً طیف بندی زیر معیارها به 5 فرض انجام گرفته که بیشتر زمین لغزش‌ها در فاصله 500 متری گسل را رخت داده است. لازم به ذکر است بطور اینکه محدوده مورد مطالعه کوهک و دارای شرایط همگن بسیاری از قبیل میزان بارش و سایر متغیرهای اقتصادی است در انتخاب معیارهای برخی از معیارها حذف شده است. برای مثال حجم کل محدوده مورد مطالعه در یک پهنه بارشی قرار داده می‌باشد که محدوده به‌طور کاملی بررسی نگرفته است.
مرحله سوم: تعبیه میزان اهمیت هر میتار در این مرحله با استفاده از مدل فازی تاپسیس میزان اهمیت هر میتار و زیر میتار در واحدهای بیکلکی مشخص شدند.

مدل فازی- تاپسیس

از اینجا که داده های یک فرآیند فضا و خصائص آنها معمولاً پیچیده است و جمع اوری داده‌های صحیح از آنها مشکل است به‌نظر می‌رسد برای کار با داده‌های غیرقطعی ویا بازه‌ای داده‌ها باید روش ویژه‌ای مورد استفاده قرار گیرد. این رو می‌توان از منطق فازی در تکنیک‌های تصمیم گیری مختلف استفاده نمود. یکی از این تکنیک‌ها تکنیک تاپسیس می‌باشد که می‌گویند با توجه به n میتار رتبه بندی می‌گردد. مینای این روش انتخاب گزینه‌ای است که کمترین فاصله را از جواب ایده آل مطلوب و بیشترین فاصله را از جواب ایده آل نامطلوب دارد (Kahraman et al., 2007). که با کاربرد منطق فازی در آن به تکنیک فازی- تاپسیس تبدیل می‌شود. عبارت دیگر در این روش، میزان فاصله یک عامل با عامل ایده آل مثبت و عامل آل منفی سنگین می‌شود و این خود می‌تواند درجه بندی و اولویت‌بندی عوامل است. به‌لطفی گزینه‌ای با عامل ایده آل مثبت و دورترین عامل نسبت به ایده آل منفی باشد. به طور خلاصه عامل ایده آل منفی از بهترین ارزش‌ها و عامل ایده آل منفی از بدترین ارزش‌ها تشکیل شده است. (Wang & Elhag, 2006).

در این تحقیق از اعداد مثلثی فازی استفاده شده است. علت اصلی برای استفاده از اعداد مثلثی این است که به طور مستقیم برای تصمیم گیران استفاده و محاسبه را آسان می‌کند. علاوه بر این با استفاده از مدل سازی فازی مثلثی نابیند شده است که با فرموله کردن مسئلی تصمیم گیری که در آن اطلاعات در دسترس نیست به‌طور دقتی هستند یک راه مؤثر می‌باشد XU (1996). در کاربردهای عملی، شکل مثلثی تابع عضوی اغلب به نمایندگی از اعداد فازی استفاده می‌شود (Zimmerman, 1996). از دیدگاه می‌باشد.

زندیکی نسبت به گزینه‌های ایده آل (RCI) با استفاده از رابطه (1) بدست می‌آید. با تلفیق لایه‌ای برای ایده آل مثبت و منفی در محیط GIS ویا لایه‌های شکل می‌گردد و اولویت بندی نهایی گزینه‌ها برابر با نگذارنده می‌باشد. در این رابطه m تعداد معیارهای است.

\[
RC_i = \sum_{j=1}^{m} d_{ij}^- + \sum_{j=1}^{m} d_{ij}^+
\]

مرحله چهارم: استخراج نقشه استعداد زمین لغزش در نواحی مختلف شهر این مرحله ترکیبی است از مراحل قبلی بدين

ARC/ GIS صورت که باید نتایج حاصل از مدل فازی- تاپسیس و لایه‌های اطلاعاتی با استفاده از توابع همیوشانی نرمافزار ترکیب شوند و در واقع عناصر فازی- تاپسیس در واحدهای بیکلکی لایه‌های اطلاعاتی وارد شده و در محیط GIS پیاده شود تا

با همیوشانی لایه‌های نهایی استخراج شود.

شرح و تفسیر نتایج
با توجه به مراحل مذكور در روش تحقیق اولین قدم شناسایی پراکنش زمین لغزش ها است که در طول زمان رخداده است.
در این راستا پس از طی مراحل مذکور زمین لغزش های رخداده مشخص شد. شکل شماره (2)، نشان دهنده پراکنش زمین لغزش ها در محدوده شهر تبریز است.

تکه فوق نشان می دهد که بیشتر لغزش ها در قسمت‌های شمال، شرق و شمال شرقی شهر تبریز رخ داده است. یکی از مهم‌ترین رانش‌های رخ داده در سال‌های اخیر رانش‌های شرق تبریز بوده که در کوی افسریه و نگین پارک تبریز رخ داده است که بقاگاه یک همچنان در کوی ولی برخی تبریز بقایی است. هسته‌های مانی موجود در هر این منطقه همراه با شبی تند و قرارگرفتن در سیستم سیلی و اینها جاری است و راه‌های سختی در این منطقه ایجاد کرده است. با توجه به اینکه منطقه یاد شده جز مناطق تقیب‌قا جدیدالحداث شهر هستند خوشبختانه راه‌خواست‌های این منطقه ایجاد شده و هیئتی در فندانسون ساخته‌های از سقوط ساخته‌های جلوگیری کرده ولی اگر این اتفاق در بخش‌های حاشیه‌نشین و فرسوده رخ می‌داد مطمئن‌ترین تلاش‌ها در خودش است. این‌گونه که مشاهده می‌شود در بخش‌های شمالی شهر مراکز تجمع‌بافت‌های فرسوده و حاشیه‌نشین هستند. رانش‌های رخ داده که از این رانش‌ها می‌توان به رانش از شهروی امر اشاره کرد. در بخش‌های شمالی زمین مهم‌ترین عامل تشکیل رانش مجاورت با گسل شمالی تبریز و اتوبان پاساران و شبی بسیار تند منطقه است. با توجه به اینکه می‌توان به شرایط جغرافیایی منطقه لغزش‌های پارک، مهم‌ترین نشانه‌های شهر در هر دویک ترین فصل به گسل‌های فعال، بالاترین سطح ایستایی‌های ترکیبی شیب‌ها سنت ترین خاک‌ها و نزدیک به راه‌های ارتباطی علی‌الخصوص اتوبان پاساران و شهر که اکثراً قرار دارند. یعنی پس از شناسایی پراکنش‌های لغزش‌های معاصر مؤثر در زمین لغزش طبق آنچه در مرحله روش تحقیق بین شدن شناسایی شدن. جدول شماره (1)، نشان دهنده معاصرها، زیر معیار و طبیعی بنده میزان تاثیر آنهاست.
جدول شماره (1): معیارها و زیر معیارهای مؤثر در خطر زمین لغش

معیارها	زیر معیار	دستگاه	واحد مناسب	محدوده
5000 متر	بالا	pldt	متر	500-1500
2000 متر	بالا	Msm	متر	1000-2000
2000 متر	بالا	Qt2-qal	متر	500-1500
3000 متر	بالا	plqc	متر	1000-3000
15 متر	بالا	Mmg	متر	5-30
15 متر	بالا	ms	متر	5-30
25 متر	بالا	plqc	متر	30-150
50 متر	بالا	50-100 متر	متر	50-100
200 متر	بالا	200-300 متر	متر	200-300
300 متر	بالا	300 متر	متر	300
6 متر	بالا	6-10 متر	متر	6-10
300 متر	بالا	300 متر	متر	300

لازم به ذکر است که با توجه به انگیزه محورهای شهر محدوده شهر باید ترسیم شود. محدوده بسیار از عوامل اقلیمی من جمله از محدوده‌های ناحیه‌ای، با فاصله بین از محدوده تجهیزهای مکانیکی و مکانیکی مشخص قرار گرفته است. انتخاب معیارهای موارد اقلیمی در نظر گرفته نشده است و برای معیارهای اقلیمی اختیاری است. با این حال، منابع اطلاعاتی در فرم‌های مخصوص سیستم اطلاعات جغرافیایی بهره‌برداری شده شده است. شکل شماره (5) نشان دهنده معیارهای مؤثر در زمین لغش است.
با دقت در نقشه شیب متوجه می‌شویم که هسته اولیه شهر و یافته مرکزی آن در یک موقعیت دشتی با شیب ملایمی بنا شده ولی توسعه روزافزون شهر آن را به سمت اطراف و دامنه‌های پر‌شیب کشتارده مخصوصاً شهرک‌های اقماری جدید‌الحداد تمام‌شده است. بخش‌های شمال و جنوب شرقی شهر احداث شده که منطیق با مناطق پر‌شیب هستند. شیب زمین در این مناطق گاهی حتی به 30 درصد نیز می‌رسد. بررسی تطبیقی نقشه‌های شیب زمین لغزش یا زمین لغزش هر رخ داده انطباق مناطق پر‌شیب و راشی را نشان می‌دهد.

خاصه از جاده: گسترش یکباره شهر و توسعه کالبدی آن با افزایش ترافیک همراه بوده و رفع این مشکل مستلزم ایجاد کمرنگی‌هایی جهت عبور ترافیک گذرا شهر خارج از محدوده شهر بوده است که بین امر موجب احداث دو اتوپی شمایی و جنوبی شهر تبریز شده است. این گذر ها ابتدا صفر با هدف عبوری احداث شده اند ولی گسترش شهر در امتداد محورهای شمالی و جنوبی نقش این گذر ها را تغییر داده و آن‌ها را تغییری به گذرهای شهری تبدیل کرده است احداث نقاطی و خروجی‌های وسیع در امتداد این گذرها خود علیه بر این مدعای است در یک جمع‌بندی کلی می‌توان گفت گسترش شهر و احاطه شدن این آتوپی‌ها در تشکیل خط زمین لغزش تاثیر بسزایی داشته و خواهد داشت.
فاضله از گسل: گسل شمال تبریز که به عنوان یکی از مخرب ترین و فعل ترین گسل های ایران شناخته شده است. در این تراکم شاهک در شمال و شرق های فرعی در شمال و شمال شرقی است. شاهک شمالی آن بقیه نقاط تقیبی منطقه با انتقال پاسداشتان است که در مسیر خود از فرودگاه تبریز شروع شد. به راه امیرشهر و شهری که در این بیمار محلات حاشیه شمالی و شهرک های رنگینی و باغیزه امیر، مشهد و مرند و غیره، از نواحی دیگر را در بر دارد. شاهک فرعی آن نیز در جنگل‌های شهرک های لیمانی شمالی زیر شاخه یی و... می باشد. پایان، نشان می دهد راه های اخیر در جنگل شرق منطقه با شاهک های فرعی گسل است.

سطح اسپتایی آب‌های شریف از شمال شرق به سمت جنوب غرب حرکت کنیم سطح اسپتایی آب کاوش می یابند. به داخل شمال و شرق تبریز، در کل برخی ناحیه متخلخل و سخت گیسم شده و به بخش توده و به دنبال کنیم. بنابراین، در مرکز شمال شرقی شاهک، سمت شمالی بافت های حاشیه نشین را شامل می شود. از این ناحیه شرقی شاهک، بنابراین به منطقه سیب به دنبال داشته در مسیر مسیب های، و به‌طور مداوم که از سمت گیره های عوون ان، علی به سمت غرب روان می شود، قرار داده است. این منطقه پس از تاریخ محو شده‌شده ویژه که در منطقه قرار دارد با توجه به شاخص محلی شاهک، روزگاری محل شاهک، بوده و در صورت رخ دادن دیواره می تواند نقش گذشته که نخود را انگا کد که در این صورت علاوه بر خسارت سیل و رانش، همه نیز مواجه خواهیم بود.

با دقت در نظر گرفتن این موضوع، فواید مشاهده می شود که تقریباً همه معیارها هماهنگ خاصی با یکدیگر، در نظر می‌گیرد از نظر منطقه با استفاده با را دارد. بنابراین از منطقه شمال و شمال شرقی شاهک در پنجم می شود با استفاده از بسیار بالا و بالا قرار دارد که این نکته حاکی از شاخه صمغی معیارها و علی الخصوص زیست‌محیطی است و بی‌بینی معیار است که منطقه شرق زده منطقه با منطقه است. که در طول زمان زمین لغزش‌ها در آن منطقه رخ داده است.

پس از شناختی معیارهای مؤثر این معیارها وارد مدل تاسیس فازی وزن شده اند. جدول شماره (2) نشان دهنده اوزان (فاصله از ابتدای آل) معیارها و زیر معیارها مستخرج از مدل تاسیسی فازی است.
جدول شماره ۲: محاسبه فاصله میان از ایده آل مثبت و ایده آل منفی

<table>
<thead>
<tr>
<th>کلیه</th>
<th>AHP</th>
<th>d_ij^+</th>
<th>d_ij^-</th>
<th>D*</th>
<th>D-</th>
</tr>
</thead>
<tbody>
<tr>
<td>عناصر متغیر فضایی</td>
<td>a</td>
<td>ar</td>
<td>ar</td>
<td>a</td>
<td>ar</td>
</tr>
<tr>
<td>کلاس سازگار</td>
<td>0.25</td>
<td>0.75</td>
<td>0</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>نسبت سازگار</td>
<td>0.25</td>
<td>0.75</td>
<td>0</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>بی نفاذ</td>
<td>0.25</td>
<td>0.75</td>
<td>0</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>نسبت ناسازگار</td>
<td>0.25</td>
<td>0.75</td>
<td>0</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>کلاس ناسازگار</td>
<td>0.25</td>
<td>0.75</td>
<td>0</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>جنس خانه</td>
<td>0.25</td>
<td>0.75</td>
<td>0</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>سطح انسانی آب</td>
<td>0.25</td>
<td>0.75</td>
<td>0</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>فاصله از جاده</td>
<td>0.25</td>
<td>0.75</td>
<td>0</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>شب</td>
<td>0.25</td>
<td>0.75</td>
<td>0</td>
<td>0.25</td>
<td>0.75</td>
</tr>
</tbody>
</table>
جدول شماره (2)، که نشان می‌دهد که در این تحقیق عوامل مؤثر در زمین‌لغش با تأثیرات

متفاوتی عمل می‌کند. جانبه عامل جنس خاک به عنوان مهم‌ترین عامل و پس از آن به ترتیب عوامل سطح ایستایی اب، فاصله از گسل، بیشهری و فاصله از جاده قراردارند که این عوامل در ارتباط با هم نشان مسئول منطق مستعد بروز زمین‌لغش را شکل

می‌دهند.

استخراج نقشه نهایی

شرايط زمین‌لغشی و لیتوژئی شهر همراه با موقعیت کوهستانی آن باعث شدید خطر زمین‌لغش در آن شده است. نتایج

نهایی نشانگر آن است که بخشی از 20 درصد محصول شهر تبریز جهت پنهانی با خط متوسط به باالا هستند که این منطق

بیشهر در محصول اراضی شمال و شمال شرقی پراکنده شده است. جدول شماره (3)، بیانگر میزان و مساحت بهره‌های خطر

زمین‌لغش در محصول شهر تبریز است.

جدول شماره 3: مساحت بهره‌های زمین‌لغش

<table>
<thead>
<tr>
<th>درصد</th>
<th>مساحت هر بکسل</th>
<th>تعداد بکسل</th>
<th>مؤلفه ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>15432145</td>
<td>25</td>
<td>استعادس بسیار بالا</td>
</tr>
<tr>
<td>8</td>
<td>87683214</td>
<td>25</td>
<td>استعادس بالا</td>
</tr>
<tr>
<td>7</td>
<td>24567890</td>
<td>25</td>
<td>استعادس متوسط</td>
</tr>
<tr>
<td>17</td>
<td>32145678</td>
<td>25</td>
<td>استعادس کم</td>
</tr>
<tr>
<td>11</td>
<td>56789012</td>
<td>25</td>
<td>استعادس بسیار کم</td>
</tr>
</tbody>
</table>

جدول شماره (4) و شکل شماره (4) به خوبی مشخص می‌کند که مناطقی از شهر تبریز در وضعیت خطر متوسط به بالای

احتمال بروز زمین‌لغش قرار دارند. با توجه به مطالب قبلی در گذشته نیز زمین‌لغش قرارگرفته در این مناطق اتفاق افتاده

است اما نکته قابل توجه این است که با وجود اینکه این بخش 30 درصد محصول شهر تبریز را اشغال کرده است اما این بخش

دقیقاً پرترکم تنها منطقه شهر از نظر جمعیتی است. جانبه همواری نقشه نهایی با نشانه بلوك‌های جمعیتی حاصل از

نتایج سرشماری عمومی نفوس و مسکن سال 1390 شهر تبریز نشان دهنده اسکان 5672344 نفر در محصول خطر متوسط به

پایا است با توجه به ترخیق یافته در این 5 سال تعداد این جمعیت بیش از 800 هزار نفر خواهد بود که در مقیاس یک

شهر جمعیت زیادی به حساب می‌آید. علاوه بر ترکم بالای جمعیتی وجود بافت های فرسوده و اسکان غیر رسمی در قسمت

های شمالی و مناطق توسیع آنی در شرق این منطق را به یکی از جزئیات ترین منطق شهر تبریز می‌کند. لازم به ذکر است

که این مناطق در نقشه‌ها یا پهنه‌هایی بندی زمین لرزه نیز همواره جز مناطق با آسیب پذیری بالا قرار داشته‌اند.
نتیجه‌گیری
با دقت بر روی نقشه نهایی و نقشه پراکندگی گسل‌های صحت و دقت پژوهش ابتکار می‌شود که به‌هم‌های خطرناک نقشه
نهایی تقریباً منطبق با لغزش‌های رخ داده است. پس می‌توان گفت که روش‌های این مقاله در این مقاله روش
مناسبی جهت به‌هم‌های خطر زمین لغزش در محدوده شهرها است. به طور کلی قسمت بخشی از محلات سیلاب، مازینال،
پایش اباد، کوی ویلیصر، شهرک به‌هم‌شکنی، کوی الیکارک، شهرک رفیع، یافگیان، شهرک فجر، شهرک خاوران و شهرک صیاد
شرایای در محدوده های با خطر بسیار بالا و بالا قرار داشته‌اند. اما محدوده‌های جنوبی و غربی کاملاً در محدوده‌های بی‌خطر قرار
دارند. در قسمت‌های شمالی و شرقی نیز محدوده‌های وسیعی در بی‌خطر ها کم خطر وجود دارد.
با توجه به گستردگی محدوده صوب شهربزرگ‌های خوز بست از نیمی از اراضی داخل محدوده بایر است. وجود چنین
ظرفیت‌های بیشتر با وجود مخاطرات محیط دارای جمله زمین لغزش نیاز به برنامه ریزی کاربری اراضی در این شهر را است
کند. بنابراین، یکی از راه‌های بهبود بهبود مسیرهای طبیعی شرایت می‌شود که به‌هم‌های خطرناک منطقه‌های محدوده
بزرگ شرایت برای شهر تبریز بخش مخاطرات طبیعی است. همچنین در است.
مناسب‌ترین طرح توسه‌های صوب شهربزرگ‌های خوز بست با مطالعه دقیق مخاطرات طبیعی شهر توسه شهر را به سمت اراضی با ریسک بی‌پایین
هداهای کردی در صدد کاهش تراکم مناطق بر خطر باشند در حالی که بی‌خطر تراکم مناطق شرایی نیز جز مناطق با تراکم بالا مشخص شده است که ادامه این روند طبیعی باعث
تشکیل مخاطرات طبیعی از الخصوص زمین لغزش خواهد بود. جهت کاهش خطرات ناشی از زمین لغزش در شهر تبریز،
پیشنهادات زیر ارائه شده است:
- ارزیابی استعداد بررسی زمین لغزش های ...

- تهیه طرح های توسعه شهری با محوریت کاهش روند توسه شهر به سمت شمال و شمال شرقی شهر.

- اخلاق سیاست طبیعی جهت کاهش تراکم های ساختمانی و جمعیتی در بخش های شمال و شمال شرقی شهر.

- ایجاد کمربند سبز در بخش های شمالی شهر منطقه واگذاری شده در حجم گسل شرق شمالی شهر جهت کاهش خطر زمین لغزش، استحکام خاک محدوده و جلوگیری از توسه شهر در این مناطق و کاهش تراکم جمعیتی.

- رعایت حرایم اتوبان های شمالی و جنوبی شهر و جلوگیری از احاطه شدن این اتوبان ها با توسه شهری.

- تخلیه محدود ساکن در نواحی با خطر سیلابی و تغییر کاربری در محدوده های بر خطر;

- طراحی شهر در محدوده های بر خطر با لحاظ کردن خطر زمین لغزش;

- استفاده از اراضی با شهر شرایط در نواحی شمالی شهر جهت ایجاد اترباک پایگاه های اسکان و امداد و نجات در نزدیکی محدوده های بر خطر;

- استفاده از سازه های پایدار و اصول مهندسی در طراحی سازه ها با توجه به شرایط الکترویزیکی و بهره بندی زمین لغزش در مناطق مختلف.

منابع

صالحی هور بر رضا (1380). «بررسی پارامترهای هیدرومورفیک مؤثر در حركات دامنه ای حوضه آبگیر ری با استفاده از GIS» پایان نامه کارشناسی ارشد. دانشگاه تهران: تهران.

زیست‌طراحی گرافیا شماره ۵ (تبریز: ۱۳۷۳). ۵۶-۱۲۰.

روستایی، شهره‌بی (1390). «بهره بندی خطر گسل برای کاربری های مختلف اراضی شهری جغرافیا و توسعه شهر» (بهرام). ۱۷-۱۲-۲۵.

نشریه تحلیل فضایی مخاطرات محیطی، سال چهارم، شماره 1، بهار 1391

عبیجی، عیضددیت. (1390). «ثشسی وبسای...».

خوب آندی سعی (1379). «روش های تأمین مسکن گروه های کم درآمد ایران (نمونه موردی: تبریز)». رساله کارشناسی ارشد دانشکده علوم انسانی و اجتماعی، گروه جغرافیا و برنامه ریزی شهری، تبریز.

خالدی، شهرهای و هم‌منش. (1391). "لرزه دریایی اثر بر پیشنهادهای خطرات محیطی. GIS (مطالعه موردی: حوزه آبخیز طالقان)". جغرافیا و مکانیک محیطی، شماره اول (بهار) 64-65.

مرکز آمار ایران (1385). "ثبت آمار برخی مفاهیم را اینکه استفاده در این مقاله نشان می‌دهد. 1385.

نادری، فتح الله (1391). "کاربرد منطق فازی در پیشنهاد خطر زمین لغزش در حوزه آبخیز چاد Доگو. پژوهش های آبخیزداری، شماره 94 (بهار) 74-85.

نصیری، شهرا (1382). "گزارش بر زمین لغزش های ایران بررسی موردی ناپایداری شیب ها در جاده هراز: پایگاه ملی علوم زمین کشور. هاشمی، سیدهنا. جلال کرمی. جلال امینی. عباسی علی محمدی، سراب (1389). "پیشنهاد منطق حساس به زمین لغزش با استفاده از الگوریتم فازی تابعی و سامانه اطلاعات جغرافیایی (مطالعه موردی: استان اقلیمی)".

Lee, Saro and M. Kyungduck (2001); “Statistical Analysis of Landslide Susceptibility at Yonging, Korea, Environmental Geology, No. 4:1095-1113.

