ارزیابی استعداد بروز زمین لغش های احتمالی در محدوده شهر تبریز

با افتتاح فنری، دانشگاه جغرافیا و برنامه ریزی شهری، دانشگاه جغرافیا و برنامه ریزی، دانشگاه تبریز، تبریز، ایران.

قرمز کرمی، دانشگاه زونومورفولوژی، دانشگاه جغرافیا و برنامه ریزی، تبریز، ایران.

محمدمحمد سالکی، کارشناسی ارشد جغرافیا و برنامه ریزی شهری، دانشگاه جغرافیا و برنامه ریزی، دانشگاه تبریز، تبریز، ایران.

دریافت مقاله: ۱۳۹۵/۰۶/۲۲
پذیرش نهایی: ۱۳۹۵/۱۲/۲۱

چکیده

ارزان ارزیابی استعداد بروز زمین لغش در محدوده شهر تبریز و تهیه نقشه پتانسیل بروز زمین لغش در این محدوده است. در این راستا ابتدا زمین لغش های رخ داده در محدوده مورد مطالعه شناسایی شدند و با استفاده از تحلیل این داده ها در نرم افزار ILWIS تعیین و زیر می‌یاب تک‌متریه شدند. سپس با استفاده از مدل فازی- تایپسیس اهمیت می‌یابند و مدل فازی- تایپسیس و تابع همبستگی در محیط ARC/ GIS تلفیق مدل فازی- تایپسیس و تابع همبستگی در محیط ARC/ GIS ، تایپسیس، ILWIS، زمان لغش، فازی- تایپسیس، ILWIS و ارزیابی، کلیدی: زمین لغش، فازی- تایپسیس، ILWIS و

1 نویسنده مسئول:

Email: a_ghanbari@tabrizu.ac.ir
مقدمه

یکی از مسائل زمین‌شناسی به‌رده‌بندی از فعالیت‌های بشری را تحت تأثیر قرار می‌دهد، وقوع زمین‌لغش ها. (Bhattarai et al, 2004) به حرکت توده سانگ و خاک به طرف پایین و گرفتن این بخش از اروپا برای کسانی که می‌توانند در این اثرکاری ناهنجاری‌های زمین‌لغش می‌گویند. (Guzzetti et al, 2005) شاهراه اموزشی در جمع‌آوری و تفسیر نشانده که کمیتی معتقد از جمله نوع مکانی تدوین، توسه زمین‌لغش تولید، عدم رعایت استانداردهای لازم و... همواره در معرض خطرات ناشی از بلاهای طبیعی قرار دارند. (Guzzetti et al., 2012).

اولین معروف در ارزیابی خطرات طبیعی به شمار رفته و نقش اکثر تکردنی در مدیریت بحران افرا نیست، به این دلیل تدبیکری از این بخش ناشی می‌شود. (Fell, 2008).

در اینجا که با برای جهان و یکی از پیامدهای اصلی برای جهان و یکی از پیامدهای اصلی، یکی از این تکنولوژی از طریق این بخش ناشی می‌شود. (Varnes, 1984).

ایران با توپوگرافی عمداً کوهرسانی، فعالیت‌های بیشتری و در هر خیز زیاد، شرایط متنبوک اقیمی و زمین شناسی عمده شرایط طبیعی برای طیف وسیعی از لغش‌های جهانی (خالی، 1391) به دلیل تعداد، تنوع، تکرار و شدت رخدادهای خطرات طبیعی و تأثیرات محیطی. ایران در ریل 10 کشور لیگ جهانی قرار دارد. (محمودی و همکاران، 2002). براساس این برآورد اولیه، سالانه 500 میلیارد ریال خسارت مالی از طریق لغش‌ها برکشواری نشان می‌دهد که این اواب اول شده توسط واریتی گزارشی، شیوع در کشور باعث می‌کند 1369، تعطیل 126 خانه، ایجاد خسارت مالی به میزان 186 میلیارد ریال، تخریب 766 جنگل و تخریب 170 کیلومتر راه ارتباطی شده است (صالحی‌پور، 1380). در این میان شهر تبریز با دارا‌پوشان خاص جهانی، شهر تبریز و روی دادن زمین لغش‌های مختلف در نقاط مختلف شهر تبریز، این شهر را تبدیل به یکی از خطرات اصلی شهر‌های ایران در خصوص مخاطرات محیطی بخصوص زمین‌لغش می‌کند و در این شرایط و با این اتفاقات به بررسی جامع و یک پهن‌ها نبودی دقیق از استعداد اراضی جهت خطر زمین‌لغش کاملاً ضروری به نظر می‌رسد. علاوه بر موارد فوق الذکر، شهر تبریز با توجه به وضعیت توپوگرافی، شرایط لیتولوژی و جغرافیایی با گسل‌هایی در نقش‌های مرتفع در قسمت‌های شمالی یکی از شرایطمان اصلی است. این شهر، به خصوص در زمین‌لغش‌های باعث dams و پیش‌بینی‌های سیالاب، زمین‌لغش‌های اطراف انتخاب‌های به‌سازار و چندین جزئی از این تربیز گیرا توجه کرده است. در نهایت این زمین‌لغش‌ها علاوه بر عوامل طبیعی، فعالیت‌های انسانی نیز می‌باشد. بنابراین با جهت به طرف فضاهای عمدی و اهمیت جهت تحقیق انگیز می‌باشد.

به موارد ذیل اشاره کرده.
در پژوهشی با عنوان پیشنهاد وقوع زمین لغوش در منطقه سرخون در استان چهارمحال و بختیاری با استفاده از
10 معماری شیب زمین، جهت دانستن، پوشش زمین، فاصله تا گسل های اصلی، شاخه سیرزیگی شاخه‌های گیاهی،
پارش سالانه، جنس زمین، فاصله با یک های اصلی و فاصله با رودخانه و با استفاده از مدل ترکیب خطی و سیمین در
محیط سیستم اطلاعات جغرافیایی به پیشنهاد زمین لغوش در منطقه با دید شده برداختن این نتایج
نتایج این تحقیق نشان می دهد

(8) 1382

در مطالعه ای با عنوان پیشنهاد مناطق حساس به زمین لغوش با استفاده از الگویم فازی تایپسیس و سامانه اطلاعات
جغرافیایی (مطالعه موردی: استان اردبیل) با استفاده از اطلاعات شیب، جهت شیب، منطقه اراضی، فاصله از
گسل و فاصله از رودخانه و استفاده از مدل فازی تایپسیس برداختن شده که نتایج حاکی از کارایی مدل فازی تایپسیس در پهن
بندی زمین لغوش است (هاشمی و همکاران، 1389).

در مقاله ای تحت عنوان بررسی کارایی مدل SINMAP در پهن‌بندی خطر زمین لغوش (مطالعه موردی: حوزه آبی‌سد
ایلام) با استفاده از مدل SINMAP به پیشنهاد بندی در منطقه با دید شده برداختن شده که نتایج حاکی از پایداری
65 درصدی در حوزه سد ايلام است (عالی و همکاران، 1390).

در پژوهشی با عنوان ارزیابی عوامل مؤثر در روبودی زمین لغوش و پیشنهاد این با استفاده از رگرسیون لجستیک در
در حوزه آبی‌سد طبقه‌بندی و رباتیز زمین لغوش در منطقه طبقه بندی اقدام شده است که نتایج تاپایداری جداکنن
جز این طبقه‌بندی می دهد (خالدی، 1391).

در تحقیقی دیگر با کاربرد منطقه فازی شامل اشتراک فازی، جمع‌چپر، ضرب چپری و فازی کاما و استفاده از 9 معیار
در تحصیلی دیگر با کاربرد منطقه فازی شامل اشتراک فازی، جمع‌چپر، ضرب چپری و فازی کاما و استفاده از 9 معیار
ی به پیشنهاد خطر زمین لغوش در حوزه آبی‌سد جرداوی در نشان شده است. نتایج نشان می دهد که
57 درصد اراضی در پهن‌بندی خطر بالا و خیلی بالا قرار دارند (نادری و همکاران، 1391).

در تحقیقی بایعنوان بررسی تعداد عوامل ورودی در مقدار دقت شبکه عصبی مصنوعی برای پیشنهاد بندی خطر وقوع زمین
لغوش در حوزه آبی‌سد خراسان از 9 نمونه در نماینده و 1 نمونه در نماینده خروجی با نسبت 1:2 به
20 به عنوان ساختار به‌هم‌اندما شده است. نتایج حاکی از پایداری 35 درصدی اراضی است (زامی و همکاران، 1391).

در تحقیقی با استفاده از روش رگرسیون خطی به پیشنهاد لغوش در نمونه کره برداخته و از میزان‌های شیب، به
شیب، ضخامت خاک، فاصله از آب‌راه، کاربرد اراضی و پوشش گیاهی استفاده شده است. سپس از مقایسه نتایج پیشنهاد
نقدش پیکر با کاربرد لغوش ها نتایج نشان دهنده این است که این روش نتایج خوب‌سازی دارد (Lee et al., 2011).

در پژوهشی با استفاده از مدل‌های ارائه اطلاعات، ترکیب سطح، شیب، زمین‌شناسی، فاصله از رودخانه، پوشش گیاهی و
فاصله از جاده به پیشنهاد بندی خطر زمین لغوش در ترکیب برداخته شده است و به این نتیجه رسیده که مدل تحلیل سلسله
مراتبی کارایی بالایی از دیگر مدل ها برای پیشنهاد بندی خطر زمین لغوش در این منطقه دارد (Yalcin et al., 2008).
ارزیابی استعداد بروز زمین لغزش های ...

در پژوهشی با استفاده از یک مدل ترکیبی بر اساس زمین شناس، رنگ‌ورپلیورالی، داده های آماری و تاریخی و مدل انواع سلولی و با استفاده از تصاویر ماهواره ای به ارائه سال‌های زمین لغزش احتمالی در سه جزیره سانتورنی ایتالیا پرداخته شده است. نتایج حاصل از این مدل در مقایسه با زمین لغزش های رخ داده در مقطع تاریخی رضایت بخش بوده است (2014, Lucà et al).

با توجه به مطالعات فوق می‌توان دریافت که بیشتر مطالعات زمین لغزش در مقياس های کلان و در محدوده جویه‌های آبریز، استان، شهرستان و... بوته است و مطالعات اندکی در مقياس‌های خرد و در محدوده‌های شری به بوته است. وجه تمایز این مقاله نسبت به سایر مقالات مطالعه و بهبود نشان دهنده اختلال زمین لغزش در داخل محدوده مقصود شری و مطالعه بر روی اراضی پای و قابل توسعه برای ایان ۱۰ ساله شهر و همچنین استفاده توانمند مدل‌های GIS ایست.

در این راستا، هدف پژوهش حاصل، ضمن شناسایی زمین لغزش های رخ داده در محدوده شهر تبریز، شناسایی عوامل و معیارهای مؤثر در رخداد زمین لغزش ها در محدوده یاد شده و ترکیب و استخراج نقشه میان استعداد اراضی محدوده شهر تبریز برای بروز زمین لغزش های احتمالی می باشد. برای دستیابی به اهداف تحقیق از روش فلزی-تانسپس و استفاده شده است.

داه ها و روش کار

محدوده مورد مطالعه این پژوهش کل محدوده شهر تبریز می باشد. شهر تبریز در شمال غربی ایران واقع شده و مرکز استان آذربایجان شرقی است. شهر تبریز به عنوان یکی از کلان‌شهرهای شهر شمال غرب ایران با وسعت حدود ۴۴۹۸۴ هکتار (مختصات جغرافیایی ۴۳۰۱۱۳۴، ۴۶۰۱۳۹۸، ۳۶۸۳۷۸) عرض شمالی با ارتفاع متوسط حدود ۱۳۰۰ متر در جمعه ای به نام جمعه تبریز واقع شده است (زمانی، ۱۳۷۹). سایر اراضی شهر تبریز در آن واقع است.

حقه اصلی مابین فلات ایران با فلات آقطسی از سوی شمال و فلات آناتولی از سوی غرب است. جمعه تبریز در مرکز این فلات در ضلع شرقی کرانه های دریاچه ارومیه قرار گرفته و بخشی از جمعه برگ کنار دریاچه ارومیه محسوب می‌شود. بستر طبیعی شهر در میان دو رشته اقتصادی واقع گردیده است. در راستای سمت شرقی شهر، ارتفاعات شمالی با ارتفاع حدود ۳۰ درجه نسبت به راستای شرقی غربی و ارتفاعات جنوبی نیز با همان راستا به همدیگر تندیک می‌شوند (خوب آبند، ۱۳۷۹). موقع جغرافیایی، استقرار شهر در محل مناطق دره‌ها و شیب‌های ملایم به همراه عوامل اقتصادی و انسانی و بویژه مرزهای سیاسی و فرهنگی، طرق ارتباطی داخلی و راه‌های ترانزیتی تبریز به کشورهای همسایه دریاچه ارومیه حیاتی و جمعه بیش از آخرین دهه برسی‌های موفقیت‌مند و استراتژیک برای شهر تبریز شده است. بعضاً عوامل فوق برای شهر مهم‌ترین چهار راه ایجاد کرده است (کرمی، ۱۳۸۲). جمعه این شهر در سرشماری نفوس و مسکن سال ۱۳۹۰، ۴۹۴، ۱۹۰۸ نفر برآورد شده است (مرکز آمار ایران).
شکل شماره ی: موقعیت محدوده مورد مطالعه

این تحقیق از نظر جز تحقیقات کاربردی- توسعه ای و از نظر روش جز تحقیقات توصیفی- تحلیلی است. فرآیند تحقیق از

۴ مرحله به ترتیب زیر تشکیل می‌شوند.

مرحله اول: شناسایی لغزش‌های رخ داده‌ها: در این مرحله ابتدا با استفاده از منابع مختلفی از جمله تصاویر ماهواره، عکس‌های هوایی، دستگاه موقعیت یاب جهانی (GPS) و باردیده‌های میدانی لغزش‌های رخ داده در داخل محدوده Global mapper, Google earth pro, Autocad map, ARC/GIS مطالعاتی شناسایی شده و با استفاده از نرم افزارهای

زئورفنس، شده و تبدیل به لایه‌های اطلاعاتی و نشان جهت نحوه و استفاده در تحلیل‌های بعدی شد.

مرحله دوم: شناسایی و استخراج معیارهای مؤثر در زمین لغزش‌های محدوده مورد مطالعه و تهیه لایه‌های اطلاعاتی در

این مرحله با استفاده از مطالعات کتابخانه‌ای، نظرات کارشناسان امروز و هم‌میهن تحقیقات زمین لغزش‌های رخ داده که

در مرحله قبل تهیه شد، به شناسایی معیارها و عوامل مؤثر در رخداد زمین لغزش‌ها پرداخته شد. بررسی های نشان داده که

بیشتر زمین لغزش‌ها در نزدیکی گسل ها بر روی خاک های سست و ناباکثر در اراضی با سطح کم ایستایی آب، شبیه‌های

تند و نزدیکی جاده‌های ارتباطی رخ داده است. پهنه‌های کثرت معیارها نیز با پایین می‌آید معیارهای مشخص شده به صورت

لایه‌های GIS تهیه شوند. بنیان منظری با استفاده از مباحث مختلفی از جمله نقشه‌های

1/25000 نمودار و عکس‌های هوایی نشانه‌های مربوط به تولید و زئورفنس شد. سپس لایه‌های

اطلاعاتی بوجود آمده در مرحله قبل تهیه وارد نرم‌افزار ILWIS شد و با روی هم گذری با نقشه لغزش‌های رخ داده

مشخص شد. کدام معیارها چه اندازه در بررسی به طبیعت زمین لغزش‌ها مؤثر به‌وده‌اند برای مثال بررسی ها نشان می‌دهد، بیشتر زمین

لغزش‌ها در مجاورت ۵۰۰ متری گسل ها رخ داده است. ضمناً طیف بندی زیر معیارها به ۵ نقطه بیشتر پیسی با بالا، متوسط، کم

و بسیار کم تقسیم شده است. لازم به ذکر است بیشتر اینکه محدوده مورد مطالعه کوچک و دارای شرایط همگانی بسیاری از

ق불 میزان بارش و سایر متغیرهای اقتصادی است در انتخاب معیارهای برخی از معیارها حذف شده است. برای مثال، چون کل

محدوده مورد مطالعه در یک پهنه پارکی قرار دارد معیار میزان بارندگی منظر قرار نگرفته است.
مرحله سوم: تعيين ميزان اهميت هر معيار: در اين مرحله با استفاده از مدل فازي تاپسيس ميزان اهميت هر معيار و زير معيار در واحدهاي پيکسلی مشخص شدند.

مدل فازي - تاپسيس

از انجا كه داده هاي یک فرايند فضايي و خصايس آنها معمولياً پيچيده است و جمع اوري داده هاي صحيح از اين مشکل است به نظر مي رسد برای كار با داده های غربقي و يا بازه ای از دادها باید روش ويزه ای مورد استفاده قرار گيرد. اين روش مي توان از منطق فازي در تکنيکهای تصميم گيري مختلف استفاده نمود. يكي از اين تكنيكيها تکنيك تاپسيس مي باشد كه يكي از اين روش ها تصميم گوري چند شاخه است. كه M زينه را با توجه به n معيار رتبه بندی مي كنند. ميناي اين روش انتخاب گزينه اي است كه كمترین فاصله را از جواب ابدي dl مطلوب و بيشترین فاصله را از جواب ابدي آراملLtd دارد (Kahraman et al, 2007). 

که با کاربردن منطق فازي در آن به تکنیک فازی- تاپسیس تبدیل می شود. عبارت دیگر در این روش، میزان فاصله یک عامل با عامل ابده dl مثبت و عامل آل منفی سنگهده می شود و این خود می معیار درجه بندي و اولویت بندي عوامل است. بهترین گزينه يا عامل بايد تاپسیس در عامل بهDL مثبت و دومرین عامل نسبت به بهDL آل منفی پاشد. به طور خلاصه عامل ابده آل مثبت از بهترین ارزشها و عامل آل آل منفی از بدترین ارزشها تشکیل شده است است (Wang & Elhag, 2006).

در این تحقق از اعداد مدلی فازی استفاده شده است. علت اصلی برای استفاده از اعداد مدلی این است که به طور مستقیم برای تصمیم گیری استفاده و محاسبه را آسان می کند. علاوه بر این، با استفاده از مدل سازی فازی مدلی ثابت شده است که با فرموله كردن مسئله تصمیم گیری كه در آن اطلاعات در دسترس ذهني و غير دقیق هستند یک راه مؤثر می باشد (Zimmerman, 1996). در كاربردهای عملی، شكل مدلی نابع عضوي اغلب به نمایندگي از استفاده مي شود. 

نديکي نسبت هر گزينهنسبت به راه حل ابدي آل (RCI) با استفاده از رابطه (1) بدست مي آيد. با تلفيق لایه هاي ابده آل مثبت و منفی در محیط GIS، لایه نهایي شكل مي گيرد و اولوتي بندي نهایي گزينهها بر اساس آن اج تم مي شود. در اين رابطه m تعداد معیارهاست.

\[ RC_i = \frac{1}{m} \sum_{j=1}^{m} d_{ij}^+ + \sum_{j=1}^{m} d_{ij}^- \]  

مرحله چهارم: استخراج نقشه استعداد زمين لغزش در نواحي مختلف شهر: این مرحله تركيبی است از مراحل قبلي بديد. 

ARC/ GIS صورت كه باید نتياج حاصل از مدل فازي- تاپسيس و لایه هاي اطلاعيني با استفاده از توابع همپوشاني نرم افزار تركيب شود و در واقع اعداد فازی- تاپسيس در واحدهاي پيکسلی لايه هاي اطلاعيني وارد شده و در محیط GIS بياده شود تا تا همپوشاني لايه ها نشان به استخراج شود.

شرح و تفسير نتایج
با توجه به مرحله مذکور در روش تحقیق اولین قدم شناسایی پراکنش زمین لغزش های است که در طول زمان رخ‌داده است.
در این راستا یا از طریق مرحله مذکور زمین لغزش های مشخص شد. شکل شماره (۴)، نشان دهنده پراکنش زمین لغزش‌ها در محدوده شهر تبریز است.

نقشه فوق نشان می‌دهد که پیشتر لغزش‌ها در قسمت‌های شمال شرقی و شمال شرقی شهر تبریز رخ داده است. یکی از مهم‌ترین راه‌های رخ داده در سال‌های اخیر راش های شمال شرقی شهر تبریز بوده که در کوی افسرده و نگین پارک تبریز رخ داده است که باعث می‌گردد که این سیلاب‌ها و آب‌های طبیعی جاری استفاده راشنتی شدیده را برای این منطقه ایجاد کرده است. یک توجه به اینکه مناطق باد شده جز مناطق تقیب توده و کوی و جنگلی بوده که استفاده زیاد کرده است. به طور کلی در نهایت ساختن ها در سطوح ساخته‌های جلوگیری کرد و اگر این اتفاق در بخش‌های حاشیه نشین و فرودگاه رخ می‌دهد مطمئناً تلفات جانی شدیدی را در می‌داشته. اینگاه که مشاهده می‌شود در بخش‌های شمالی بزرگ‌ترین مرکز تجمع‌های فرسوده و حاشیه نشین هستند راش‌های زمین رخ داده که از این راش‌ها می‌توان به راش در شرق ام اشاره کرد. در بخش‌های شمالی، نشان می‌بیند اعداد تعداد راش‌ها معاوشرت با گسل‌های شمالی تبریز و انتقال پاساران و شیب بسیار تند منطقه است. با توجه به اینکه معایر و زیبایی‌های موجود در زمین لغزش‌ها در طول زمان رخ‌داده است. چنانچه قسمت‌های پای شده شهر در نزدیک ترین فاصله به گسل‌های فعال، بالاترین سطح است. با توجه به اینکه، شیب ها، سست ترین خاک و نزدیک به راه‌های ارتباطی به انوازان پاساران و شیب کسبی قرار دارد. پس از شناسایی پراکندگی لغزش‌ها معایره مؤثر در زمین لغزش زمین طبق آنچه در مرحله روش تحقیق بیان شد شناسایی شدند. جدول شماره (۱)، نشان دهنده معایره و زیبایی و طبقه بندی میزان تأثیر آن‌هاست.

شکل شماره ۳: پراکنش زمین لغزش‌ها در محدوده شهر تبریز.
جدول شماره (۱): معیارها و زیر معیارهای مؤثر در خطر زمین لغزش

<table>
<thead>
<tr>
<th>آسیب پذیری پایین</th>
<th>آسیب پذیری متوسط</th>
<th>آسیب پذیری بالا</th>
<th>زیر معیار</th>
<th>معیار ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاصله از خطوط گسل</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>500-1000 متر</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>2000-3000 متر</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>بالاتر از 3000 متر</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>pldt</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Msm4</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Qtr-qal</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>plqc</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Mmg3-msc5</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>سطح استانی آب</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>5-15 متر</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>15-35 متر</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>35 متر و بیشتر</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>شیب</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>35-100 درصد</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>100-150 درصد</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>زیر 6 درصد</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>0-5 درصد</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>فاصله از جاده</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>50-100 متر</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>100-200 متر</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>200-300 متر</td>
</tr>
<tr>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>300 به بالا</td>
</tr>
</tbody>
</table>

لازم به ذکر است که با توجه به انکه محدوده شهر تبریز تقیبلا در یک شرایط و محیط اقلیمی مشخص قرار گرفته است در انتخاب معیارها موارد اقلیمی در نظر گرفته نشد است و آنها عوامل اقلیمی از جمله بارش از مهترین عوامل تشکید راشن خاک هستند. پس از شناسایی معیارها و زیر معیارهای مؤثر با استفاده از منابع اطلاعاتی مذکور در مراحل قبلی لایه های اطلاعاتی در قالب فرم های مخصوص سیستم اطلاعات جغرافیایی تهیه شد. شکل شماره (۵) نشان دهنده معیارهای مؤثر در زمین لغزش است.
شکل شماره ۳: معیارهای ضروری در پیشنهاد زمین‌لغزش

شیب‌ها دقت در نقشه شیب متنوعه می‌شوم که هسته اولیه شهر و سطح مرکزی آن در یک موقعیت دشتنی با شیب ملامین باشد و تیز ترودنگی شهر و سمت اطراف و دامنه‌های همدل در سطح مخصوصاً شهرک‌های اقماری جدید‌الحافدی تمامی در بخش‌های شمال و جنوب شرقی شهر. احداث شده که منطقی با منطقه‌های پرشرب‌هستند. شیب زمین در این مناطق گاهی حتی به ۳۰ درصد تا ۳۵ درصد از گریز و طبقی نقشه معیارها و زمین‌لغزش های رخ داده انطباق منطقی پرشرب و رانش‌ها نشان می‌دهد.

فاضل از جاده: گسترش یکپاره شهر و توسعه کالبدی آن با افزایش ترافیک همراه بوده و رفع یا مشکل مستلزم ایجاد کمرنگی‌های جهت عبور ترافیک گذری شهر خارج از محدوده شهر بوده است که بر اثر موج‌های باد، اتهام و توده‌های تری و توده‌های باریک به‌طور اتوماتیک از جانب این گسترش شهر در امتداد محورهای شمالی و جنوبی تغییر حرکت و تغییر سیستم‌های توزیع و انتقال جریان و خروجی‌های السیسی در امتداد این گذرگاه‌ها خود علت بر این مدعا و این باعث افزایش به‌وجود آمدن نشانه‌های مبهم گسترش شهر و احاطه شدن این اطوبان‌ها در تشیذ خطر زمین‌لغزش تاثیر بسزایی داشته و خواهد داشت.
فاصله از گسل: گسل شمال تیریز که به عنوان یکی از مخرب ترین و فعل ترین گسل های ایران شناخته شده است دارای یک شاخه اصلی در شمال و شاخه دیگر فرعی در شرق و شمال شرقی است. شاخه شمالی آن طبق نظریه تکینه‌کننده آب‌و-هوایی از جهت انتزاع این سرزمین برای انبوه پاسداران است که در مسیر خود از فرودگاه تیریز شروع شده و به سمت شمال و منطقه‌های شمالی آن امتداد می‌یابد. این مسیر محلات حاشیه شمالی و جنوبی را می‌تواند که در این نواحی وجود داشته باشد. شاخه فرعی آن نیز در بیشتری شرکت کرده و پیوسته شمال شریسته و... در بعضی از نقاط تحت تاثیر قرار گرفته است.

سطح استانی آب‌های از شمال شرقی به سمت جنوب غرب حاشیه کنار لحاظ این گسل از شمال به سمت جنوب دارد. این گسل در کرت کنار لحاظ این گسل است. این گسل در کرت کنار لحاظ این گسل است. این گسل در کرت کنار لحاظ این گسل است.

زمین شناسی: مناطق شرقی و شمالی شهر با دارا بودن هسته‌های مارینی و رسی و قابلیت جذب شدید آب به حساب تربیت و خطرناک تربیت مناطق لغزشی تبدیل شده اند. همان طور که گفته شد مناطق شرقی منطقه‌ای بافت جدید‌الحاتم شهر هستند و در این منطقه شیب بسیار تنها داشته در مسیر مسیله‌ها و آب‌هایی جاری که از سمت کوه های گون این سمت شیر روته می‌شود قرار دارد. استفاده لغزشی این مناطق بسیار پایین است حتی محله سیلاب فوتخانه که در منطقه قرار دارد با توجه به نام محله مشخص است که روزگاری محل عبرت سیل به یک صورت رخ دادن دیده می‌شود. مقصد گذشته خود را اینگونه که در این صورت علاوه بر خسارات سیلی نیز مواجه این خواهیم بود.

با دقت در نقشه‌های فوق مشاهده می‌شود که تقریباً همه معیارها همواره‌ای خاصی با یکدیگر از نظر منطقه با استفاده بالا را دارد. جوانه اکثر مناطق شمال و شمال شرقی شهر در پهنای بایا است به استفاده بسیار بالا و بالا قرار دارد که این نکته حاکی از شناخت صحیح معیارها و علی الخصوص زیر معیارها است و بدین معنی است که منطقه نیاز به شده منطقه با منطقه است. این که در طول زمان زمین لغزشها در آن منطقه رخ داده است.

پس از شناسایی معیارهای مؤثر این معیارها وارد مدل تجزیه ولیم تایپسیس فازی وزن شده اند. جدول شماره (۲) نشان دهنده اوزان (فاضله از ابتدای آل) معیارها و وزن معیارها مستخرج از مدل تایپسیس فازی است.
جدول شماره 2: محاسبه فاصله معیارها از ایده آل متیت و ایده آل منفی

<table>
<thead>
<tr>
<th>منبع متغیرهای زمین</th>
<th>اخلاق</th>
<th>W</th>
<th>د</th>
<th>S</th>
<th>D</th>
<th>Dُ</th>
</tr>
</thead>
<tbody>
<tr>
<td>اخلاق</td>
<td>AHP</td>
<td>a1</td>
<td>ar</td>
<td>ar</td>
<td>a1</td>
<td>ar</td>
</tr>
<tr>
<td>کلاس سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>نسبت سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>رطوبت تغییر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>کلاس سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>حجم خاک</td>
<td>AHP</td>
<td>a1</td>
<td>ar</td>
<td>ar</td>
<td>a1</td>
<td>ar</td>
</tr>
<tr>
<td>منبع متغیرهای زمین</td>
<td>اخلاق</td>
<td>W</td>
<td>د</td>
<td>S</td>
<td>D</td>
<td>Dُ</td>
</tr>
<tr>
<td>کلاس سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>نسبت سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>رطوبت تغییر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>کلاس سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>سطح انسانی</td>
<td>AHP</td>
<td>a1</td>
<td>ar</td>
<td>ar</td>
<td>a1</td>
<td>ar</td>
</tr>
<tr>
<td>منبع متغیرهای زمین</td>
<td>اخلاق</td>
<td>W</td>
<td>د</td>
<td>S</td>
<td>D</td>
<td>Dُ</td>
</tr>
<tr>
<td>کلاس سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>نسبت سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>رطوبت تغییر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>کلاس سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>فاصله از جاده</td>
<td>AHP</td>
<td>a1</td>
<td>ar</td>
<td>ar</td>
<td>a1</td>
<td>ar</td>
</tr>
<tr>
<td>منبع متغیرهای زمین</td>
<td>اخلاق</td>
<td>W</td>
<td>د</td>
<td>S</td>
<td>D</td>
<td>Dُ</td>
</tr>
<tr>
<td>کلاس سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>نسبت سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>رطوبت تغییر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>کلاس سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>شب</td>
<td>AHP</td>
<td>a1</td>
<td>ar</td>
<td>ar</td>
<td>a1</td>
<td>ar</td>
</tr>
<tr>
<td>منبع متغیرهای زمین</td>
<td>اخلاق</td>
<td>W</td>
<td>د</td>
<td>S</td>
<td>D</td>
<td>Dُ</td>
</tr>
<tr>
<td>کلاس سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>نسبت سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>رطوبت تغییر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>کلاس سنگر</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
جدول شماره (۳) که خروجی مدل تایپس قازی است نشان می‌دهد که در این تحقیق عوامل مؤثر در زمین لغش با تأثیرات متفاوتی عمل می‌کند. چنانچه عامل جنس خانه به عنوان مهم‌ترین عامل و پس از آن به ترتیب عوامل سطح ایستایی، پاصله از گسک، شب و فاصله از جاده قرار دادن که این عوامل در ارتباط با هم نقش منطقی مستعد بر روی زمین لغش را شکل می‌دهند.

استخراج نقشه نهایی
شرایط زئومورفولوژیک و لنژولوژی شهر همراه با موقعیت کوه‌هایی آن باعث تشکیل خطر زمین لغش در آن شده است. نتایج نهایی نشانگر آن است که بیش از ۳۰ درصد محدوده شهر تبریز جز بهنهایا با خطر متوسط به‌پایه همسان کرده این مناطق بیشتر در محدوده اراضی شمال و شمال شرقی پراکنده شده است. جدول شماره (۴)، داگر میزان و مساحت بهره‌های خطر زمین لغش در محدوده شهر تبریز است.

جدول شماره (۴) مساحت بهره‌های زمین لغش

<table>
<thead>
<tr>
<th>مؤلفه‌ها</th>
<th>تعداد پیکسل</th>
<th>مساحت هر پیکسل</th>
<th>تعداد پیکسل</th>
<th>مساحت هر طبقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>استعداد بسیار بالا</td>
<td>۶</td>
<td>۱۵۴۳۴۴۱۵</td>
<td>۲۵</td>
<td>۶۵۴۶۵</td>
</tr>
<tr>
<td>استعداد بالا</td>
<td>۸</td>
<td>۲۰۷۸۸۰۰</td>
<td>۲۵</td>
<td>۸۰۷۱۵۴</td>
</tr>
</tbody>
</table>
| استعداد متوسط | ۱۷            | ۲۴۸۸۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
نتیجه‌گیری

با دقت بر روی نقشه نهایی و نقشه پرآکنده گسل ها صحت و دقت پژوهش ابتدا می شود که به‌هنه‌های خطرناک نقشه نهایی تقریباً منطقی با لغزش های رخ داده است. این می‌توان نتیجه‌گیری کرد که روش و الگوی ارایه شده در این مقاله روی مناسبی جهت به‌هنگیری خطر زمین لغزش در محدوده شهرها است. به طور کلی قسمت‌هایی از محلات سیلاب، مزارعی، پوش‌آباد، گوی و عصر، شهرک باغمیشته، کوی گلیارک، شهرک شهید یافجیان، شهرک فجر، شهرک خاوران و شهرک صیاد شهرزای در محدوده های با خطر بسیار بالا و بالا قرار دارند. اما محدوده‌های جنوبی و غربی کاملاً در محدوده‌های بی‌خطر قرار دارند. در قسمت‌های شمالی و شرقی نیز محدوده‌های بی‌خطر به‌هنگیری کم خطر وجود دارد.

با توجه به گسترده‌گی محدوده‌های مصوب شهر تبریز هنوز بیش از نیمی از اراضی در داخل محدوده‌های پایین است. وجود چنین ظرفیت‌های مهم با وجود مخاطرات محیطی بر جمله زمین لغزش لوم یک برنامه برای کاهش بازی اراضی در این شهر را دارد. مسئله برای شهر تبریز بحث مخاطرات طبیعی است که در این میان زمین‌بزرگی و رانش زمین جز مهم‌ترین آنها است. مناسب‌ترین طرح توسه‌های شهر تبریز با دانستن طبقه دقیق مخاطرات طبیعی شهر توسه شهر را به سمت اراضی با ریسک پایین هدایت کرده در صد کاهش تراکم مناطق پر خطر باشد در حالی که پرخطر ترین مناطق را شناخته و تغییر مناطق‌های تراکم با پرترکم ترین مناطق شهر مستند که در طرح های توسه شهری نیز جز مناطق با تراکم بالا مشخص شده اند که ادامه این روند طبقاً باعث تشیید مخاطرات طبیعی برای خاصیت زمین لغزش خواهد بود. جهت کاهش خطرات ناشی از زمین لغزش در شهر تبریز، پیشنهادات زیر ارائه شده است:
ارزیابی استعداد بروز زمین لغزش‌های...

- بررسی و مطالعه و تهیه طرح‌های ریز به‌هم‌بندی مخاطرات محیطی از جمله خطر زمین لغزش توسط مدیریت شهری;
- تهیه طرح‌های توسعه شهری با محوریت کاهش روند توزیع شرایط به سمت شمال و شمال شرقی شهر.
- اتخاذ سیاست‌های جهت کاهش تراکم ساختاری و جمعیتی دربخش‌های شمال و شمال شرقی شهر.
- ایجاد کم‌ریز سیستم بازیابی و توزیع آب در شمال شهر مثابه و ایجاد مناطق واقع در خیابان‌ها و شمال شهر کاهش خطر زمین لغزش، استحکام خاک محدوده و جلوگیری از توزیع شرایط در مناطق و کاهش تراکم جمعیتی.
- تغییر حریم اپان ب elemsی شمال و جنوبی شهر و جلوگیری از احاطه شدن این اپان‌ها با توزیع شرایط شهری.
- تخلیه مردم ساکن در نواحی با خطر سیل و تغییر کاربری در محدوده‌های پر خطر;
- طراحی شهر در محدوده‌های پر خطر با لحاظ کردن خطر زمین لغزش;
- استفاده از اراضی و فضاهای سیب در نواحی شمالی شهر جهت ایجاد پایگاه‌های اسکان و امداد و نجات در نزدیکی محدوده‌های پر خطر;
- استفاده از سازه‌های پایدار و اصول مهندسی در طراحی سازه‌ها با توجه به شرایط لیتوپاتیک و به‌هم‌بندی زمین لغزش در مناطق مختلف.

منابع

- دانشکده علوم انسانی و اجتماعی گروه جغرافیا و برنامه ریزی شهری تبریز.
- قبایل‌های هادی؛ عباس رجبی کارپزی (1383). "پهن‌ی‌نی نواحی مستعد زمین لغزش در حوضه ایرانی کال سالار (تربت حیدریه)" مجله علوم جغرافیایی شهره 5 و 6 (بهرام و تابستان) 137-148.
- صالحی پور علی رضا (1382). "بررسی پامنکه‌های هیدرومورفیک مؤثر در حرکات دامنه‌ای حوضه ایرانی جای با استفاده از پایان نامه کارشناسی ارشد دانشگاه تهران.
- GIS زیست‌محیطی تکامل شرکت تبریز تجمع توسط شرکت زیستا.
- زنگی آبادی، اینی‌نی کارپزی (1385). زندگی تهران و ارتباط آب‌یاری و سیستم‌های زیستی. یوبه‌های جغرافیایی. شماره ۴۶ (تایه‌نامه) 131-۱۴۶.
- روستایان، شهری؛ راهی علی‌زاده (1391). "پهن‌ی‌نی نواحی مستعد زمین لغزش در حوضه صوفی‌چای" فضای جغرافیایی. سال دوازدهم. شماره ۳۹ (پاییز) ۱۴-۱۴-۲۵.
- روستایان، شهری؛ راهی علی‌زاده (1390). "پهن‌ی‌نی نواحی مستعد نزدیک شرایط. جغرافیایی و توسعه. شماره ۲۱ (پاییز) ۱۴-۲۸.

کریمی، محمدرضا (1382). "مکان‌یابی هنرستان‌های فنی و حرفه‌ای با استفاده از سیستم اطلاعات جغرافیایی (نمونه موردی تبریز).رساله کارشناسی ارشد. دانشگاه تبریز دانشکده علوم انسانی و اجتماعی گروه جغرافیا و برنامه ریزی شهری تبریز.
- کرم، عبدالکریم (1383). "کاربرد تکنیک خطی و انتIKE اپان (WLC) در پهن‌ی‌نی مستعد ورقوی زمین لغزش (مطالعه موردی: منطقه سربخ در استان چهارمحال و بختیاری). جغرافیایی و توسعه. (پاییز و تابستان) 131-۱۴۶.
نظریه تحلیل فضایی مخاطرات محیطی، سال چهارم، شماره ۱، بهار ۱۳۹۶


خوب، آنه سعید. (۱۳۷۹). «روشی برای تأمین مسکن گروه‌های کم درآمد در ایران (نمونه موردی: تبریز)»، سلسله کارشناسی ارشد. دانشگاه علوم انسانی و اجتماعی، جوهر گرافیا و برنامه ریزی شهری، تبریز.

خالدی، شهریار؛ خه بات درشفی. آکثر سهم‌آسا، سعیده قهر، جاحی. (۱۳۹۱). ارزیابی عوامل مؤثر در روند زمین‌لرزه و پهنگ بندی آن با استفاده از گردون هستیک در محیط GIS (مطالعه موردی: جوهر آبی طالقان)، گرافیا و مخاطرات محیطی، شماره اول (بهار): ۶۲-۵۸.

مرکز آمار ایران. (۱۳۸۵). نتایج تفسیری سرشماری عمومی نفوس و مسکن سال ۱۳۸۵.

مرادی، حمید رضا؛ علی‌سپه، سهیونه. پرویز عبادالمالکی. (۱۳۹۱). بررسی تعداد عوامل ورودی در مقدار دقیت شبکه عصبی مصنوعی برای پهنگ بندی خطر وقوع زمین‌لرزه (بررسی موردی: جوهر آبی هزاره) در جهت مورد نیاز و آبخزداری. مجله منابع طبیعی ایران، شماره ۲ (نیسان):

نادری، فتح اللح (۱۳۹۱). «کاربرد منطق فازی در پهنگ بندی خطر زمین‌لرزه در جوهر آبی چرداول»، پژوهش‌های آبخزداری، شماره ۹۴ (بهار): ۷۴-۵۸.

نصیری، شهروی. (۱۳۸۳). «تغییر پنهان در پهنگ بزرگی ایران بررسی موردی ناپایداری شیب‌ها در جاده هزاراپیاک‌ها»، ملی علوم زمین‌شناسی، هاشمی، سیدمحمد: جلال‌الدین. جمال امینی، عباسی علی‌محمدی، سراب. (۱۳۸۹). «پهنگ بندی مناطق حساس به زمین‌لرزه با استفاده از الگوریتم فازی تابیسکس و سامانه اطلاعات جغرافیایی (مطالعه موردی: استان لرستان)». نسجی از دور و ایران. سال دور، شماره چهارم (زمستان): ۳۵-۲۶.


