دوره 11، شماره 3 - ( 10-1403 )                   جلد 11 شماره 3 صفحات 0-0 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

omidvar K, yousefi ramandi R, toofani H. Investigation and monitoring of atmospheric pollution over Iran using Sentinel 5 satellite. Journal of Spatial Analysis Environmental Hazards 2024; 11 (3)
URL: http://jsaeh.khu.ac.ir/article-1-3432-fa.html
امیدوار کمال، یوسفی رامندی روح الله، طوفانی کوپائی هاجر. بررسی و پایش آلایندهای جوی بر روی ایران با استفاده از ماهواره سنتینل 5. تحلیل فضایی مخاطرات محیطی. 1403; 11 (3)

URL: http://jsaeh.khu.ac.ir/article-1-3432-fa.html


1- دانشگاه یزد ، komidvar@yazd.ac.ir
2- دانشگاه یزد
چکیده:   (2617 مشاهده)
آلودگی هوا می تواند اثرات منفی جدی بر سلامت انسان از جمله بیماری های قلبی عروقی و تنفسی داشته باشد. پایش و کنترل آلاینده های هوا برای حفاظت از سلامت عمومی و محیط زیست بسیار مهم است. کشور ایران مانند بسیاری از کشورهای در حال توسعه با آلودگی هوا به ویژه در کلان شهرها و شهرهای صنعتی خود مواجه است. یکی از ابزارهای قدرتمند در پایش آلودگی هوا، روش های مبتنی بر سنجش از دور می باشد.هدف این مطالعه استفاده از داده‌های ماهواره‌ای با وضوح نسبتاً بالا برای پایش کیفیت هواو میزان آلودگی هوا با استفاده از تصاویر سنجنده سنتینل-5(Sentinel-5P)است.در این مطالعه، پایشی جامع براساس مقادیر برخی از مهمترین آلاینده ­های هوا (از جمله AI،O3،NO2،SO2,CH4وCO با استفاده از تصویرهای ماهواره سنتینل-5 برای کشور ایران در سالهای 2019 -2023 صورت گرفته است نتایج این تحقیق نشان داد ، که انتشار گاز های مونو اکسید کربن و دی اکسید گوگرد روند کاهشی(در ماه های ژوئن بعنوان نمونه ماه مورد بررسی) داشته ، اما گاز دی اکسید نیتروژن،گاز متان، گاز ازن و آئروسلها روند افزایشی را طی ماه های ژوئن 2021 تا 2023 داشته اند. به طور کلی، آلودگی هوا در بخش‌های شمالی کشور، به‌ویژه در شهرهای بزرگ و چند تجمع بزرگ شهری بسیار جدی‌تر است، در مطالعه حاضر ، بررسی شد که چگونه سطح شش آلاینده هوا در کشور ایران در ماه های ژوئن 2019 تا 2023 متغیر و متفاوت هستند.  از دیگر نتایج مهم این تحقیق این است که در مجموع میزان آلودگی هوا در سالهای 2020-2023 در مقایسه با سال 2019 با روندی افزایشی مواجه شده است. همچنین پایش صورت گرفته بوسیله تصویرهای ماهواره سنتینل-۵ نشان می ­دهد که در سال های اخیر، تهران آلوده ­ترین هوا را به لحاظ مجموع گازهای مونوکسید کربن، دی اکسید نیتروژن، دی اکسید گوگرد و ذرات معلق (گرد و غبار) داشته استهمچنین  تغییرات غلظت آلاینده ها از الگوی خاصی تبعیت نمی‌کند. همچنین مشخص شد سامانه GEE قادر است حجم زیادی از داده ها را در زمان بسیار اندک با دقت بالا پردازش کند.
 
متن کامل [PDF 3754 kb]   (34 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/12/1 | پذیرش: 1403/7/1 | انتشار: 1403/10/3

فهرست منابع
1. غریبی, شیوا, شایسته, & کامران. (1400). کاربرد تصاویر ماهواره ای سنتینل 5 در شناسایی کانون‌های آلاینده‌های هوا در ایران. سامانه نشریات علمی, 8(3), 123-138.‎
2. قنادی, محمدامین, شهری, متین, & مرادی, امیررضا. (1401). پایش آلودگی هوا با استفاده از تصاویر ماهواره سنتینل-5 (مطالعه موردی: شهرهای بزرگ صنعتی ایران). فصلنامه علوم محیطی, 20(2), 81-98. doi: 10.52547/envs.2022.1026
3. محمدنژاد آروق، وحید. (1399). شناسایی اراضی شهری با استفاده از تصاویر ماهواره ای سنتینل 1 و 2 بر پایه سامانه گوگل ارث انجین (GEE). پژوهش های جغرافیای برنامه ریزی شهری، 8(3 )، 613-630. SID. https://sid.ir/paper/1063348/fa
4. Adebayo-Ojo, T. C., Wichmann, J., Arowosegbe, O. O., Probst-Hensch, N., Schindler, C., & Künzli, N. (2022). Short-Term Effects of PM10, NO2, SO2 and O3 on Cardio-Respiratory Mortality in Cape Town, South Africa, 2006-2015. International journal of environmental research and public health, 19(13), 8078. [DOI:10.3390/ijerph19138078.]
5. Boersma, K. F., Eskes, H. J., & Brinksma, E. J. (2004). Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research: Atmospheres, 109(D4).
6. Cao, Z., Luan, K., Zhou, P., Shen, W., Wang, Z., Zhu, W., Qiu, Z., & Wang, J. (2023). Evaluation and Comparison of Multi-Satellite Aerosol Optical Depth Products over East Asia Ocean. Toxics, 11(10), 813. [DOI:10.3390/toxics11100813.]
7. Chadwick, G. L., Joiner, A. M. N., Ramesh, S., Mitchell, D. A., & Nayak, D. D. (2023). McrD binds asymmetrically to methyl-coenzyme M reductase improving active-site accessibility during assembly. Proceedings of the National Academy of Sciences of the United States of America, 120(25), e2302815120. [DOI:10.1073/pnas.2302815120.]
8. Chakrabortty, R., Pal, S. C., Ghosh, M., Arabameri, A., Saha, A., Roy, P., Pradhan, B., Mondal, A., Ngo, P. T. T., Chowdhuri, I., Yunus, A. P., Sahana, M., Malik, S., & Das, B. (2023). Weather indicators and improving air quality in association with COVID-19 pandemic in India. Soft computing, 27(6), 3367–3388. [DOI:10.1007/s00500-021-06012-9 (Retraction published Soft comput. 2023 May 29;:1-2).]
9. Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., ... & McLinden, C. A. (2022). Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature, 601(7893), 380-387.
10. Culková, E., Lukáčová-Chomisteková, Z., Bellová, R., Rievaj, M., Švancarová-Laštincová, J., & Tomčík, P. (2023). An Interference-Free Voltammetric Method for the Detection of Sulfur Dioxide in Wine Based on a Boron-Doped Diamond Electrode and Reaction Electrochemistry. International journal of molecular sciences, 24(16), 12875. [DOI:10.3390/ijms241612875.]
11. Halder, B., Ahmadianfar, I., Heddam, S., Mussa, Z. H., Goliatt, L., Tan, M. L., Sa'adi, Z., Al-Khafaji, Z., Al-Ansari, N., Jawad, A. H., & Yaseen, Z. M. (2023). Machine learning-based country-level annual air pollutants exploration using Sentinel-5P and Google Earth Engine. Scientific reports, 13(1), 7968. [DOI:10.1038/s41598-023-34774-23]
12. Han, L., Zhou, W., Pickett, S. T., Li, W., & Qian, Y. (2018). Multicontaminant air pollution in Chinese cities. Bulletin of the World Health Organization, 96(4), 233–242E. [DOI:10.2471/BLT.17.195560]
13. Hassaan, M. A., Abdallah, S. M., Shalaby, E. A., & Ibrahim, A. A. (2023). Assessing vulnerability of densely populated areas to air pollution using Sentinel-5P imageries: a case study of the Nile Delta, Egypt. Scientific reports, 13(1), 17406. [DOI:10.1038/s41598-023-44186-36.]
14. Heue, K. P., Richter, A., Bruns, M., Burrows, J. P., Platt, U., Pundt, I., ... & Wagner, T. (2005). Validation of SCIAMACHY tropospheric NO 2-columns with AMAXDOAS measurements. Atmospheric Chemistry and Physics, 5(4), 1039-1051.
15. Hong, W. Y., Koh, D., & Yu, L. E. (2022). Development and Evaluation of Statistical Models Based on Machine Learning Techniques for Estimating Particulate Matter (PM2.5 and PM10) Concentrations. International journal of environmental research and public health, 19(13), 7728. [DOI:10.3390/ijerph19137728]
16. Hosseini, V., & Shahbazi, H. (2016). Urban air pollution in Iran. Iranian Studies, 49(6), 1029-1046.
17. Ialongo, I., Bun, R., Hakkarainen, J., Virta, H., & Oda, T. (2023). Satellites capture socioeconomic disruptions during the 2022 full-scale war in Ukraine. Scientific reports, 13(1), 14954. [DOI:10.1038/s41598-023-42118-w.]
18. Karim, I., & Rappenglück, B. (2023). Impact of Covid-19 lockdown regulations on PM2.5 and trace gases (NO2, SO2, CH4, HCHO, C2H2O2 and O3) over Lahore, Pakistan. Atmospheric environment (Oxford, England : 1994), 303, 119746. [DOI:10.1016/j.atmosenv.2023.119746.]
19. Mandal, J., Samanta, S., Chanda, A., & Halder, S. (2021). Effects of COVID-19 pandemic on the air quality of three megacities in India. Atmospheric research, 259, 105659. [DOI:10.1016/j.atmosres.2021.105659]
20. McDuffie, E. E., Sarofim, M. C., Raich, W., Jackson, M., Roman, H., Seltzer, K., Henderson, B. H., Shindell, D. T., Collins, M., Anderton, J., Barr, S., & Fann, N. (2023). The Social Cost of Ozone-Related Mortality Impacts From Methane Emissions. Earth's future, 11(9), 10.1029/2023ef003853. [DOI:10.1029/2023ef003853.]
21. Nguyen, T. P. M., Bui, T. H., Nguyen, M. K., Nguyen, T. H., Vu, V. T., & Pham, H. L. (2021). Impact of COVID-19 partial lockdown on PM 2.5, SO 2, NO 2, O 3, and trace elements in PM 2.5 in Hanoi, Vietnam. Environmental Science and Pollution Research, 1-11.
22. Niepsch, D., Clarke, L. J., Newton, J., Tzoulas, K., & Cavan, G. (2023). High spatial resolution assessment of air quality in urban centres using lichen carbon, nitrogen and sulfur contents and stable-isotope-ratio signatures. Environmental science and pollution research international, 30(20), 58731–58754. [DOI:10.1007/s11356-023-26652-8.]
23. Nouri, F., Taheri, M., Ziaddini, M., Najafian, J., Rabiei, K., Pourmoghadas, A., Shariful Islam, S. M., & Sarrafzadegan, N. (2023). Effects of sulfur dioxide and particulate matter pollution on hospital admissions for hypertensive cardiovascular disease: A time series analysis. Frontiers in physiology, 14, 1124967. [DOI:10.3389/fphys.2023.1124967.]
24. Rabiei-Dastjerdi, H., Mohammadi, S., Saber, M., Amini, S., & McArdle, G. (2022). Spatiotemporal analysis of NO2 production using TROPOMI time-series images and Google Earth Engine in a middle eastern country. Remote Sensing, 14(7), 1725.
25. Rahman M. M. (2023). Recommendations on the measurement techniques of atmospheric pollutants from in situ and satellite observations: a review. Arabian Journal of Geosciences, 16(5), 326. [DOI:10.1007/s12517-023-11410-118.]
26. Rudke, A. P., Martins, J. A., Hallak, R., Martins, L. D., de Almeida, D. S., Beal, A., Freitas, E. D., Andrade, M. F., Koutrakis, P., & Albuquerque, T. T. A. (2023). Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak. Remote sensing of environment, 289, 113514. [DOI:10.1016/j.rse.2023.113514.]
27. Singh, V., Singh, S., Biswal, A., Kesarkar, A. P., Mor, S., & Ravindra, K. (2020). Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environmental Pollution, 266, 115368.‌
28. Tao, M., Fiore, A. M., Jin, X., Schiferl, L. D., Commane, R., Judd, L. M., ... & Tian, Y. (2022). Investigating changes in ozone formation chemistry during summertime pollution events over the Northeastern United States. Environmental Science & Technology, 56(22), 15312.-15327.
29. Taha, R. A., Shalabi, A. S., Assem, M. M., & Soliman, K. A. (2023). DFT study of adsorbing SO2, NO2, and NH3 gases based on pristine and carbon-doped Al24N24 nanocages. Journal of molecular modeling, 29(5), 140. [DOI:10.1007/s00894-023-05547-y.]
30. Wang, C., Wang, T., & Wang, P. (2019). The spatial–temporal variation of tropospheric NO2 over China during 2005 to 2018. Atmosphere, 10(8), 444.
30. غریبی, شییسته, & کامران. (1400). کاربرد تصاویر ماهواره ای سنتینل 5 در شناسایی کانون‌های آلاینده‌های هوا در ایران. سامانه نشریات علمی, 8(3), 123-138.‎وا, شایسته, & کامران. (1400). کاربرد تصاویر ماهواره ای سنتینل 5 در شناسایی کانون‌های آلاینده‌های هوا در ایران. سامانه نشریات علمی, 8(3), 123-138.‎
31. Zhang, Q., Yin, Z., Lu, X., Gong, J., Lei, Y., Cai, B., Cai, C., Chai, Q., Chen, H., Dai, H., Dong, Z., Geng, G., Guan, D., Hu, J., Huang, C., Kang, J., Li, T., Li, W., Lin, Y., Liu, J., … He, K. (2023). Synergetic roadmap of carbon neutrality and clean air for China. Environmental science and ecotechnology, 16, 100280. [DOI:10.1016/j.ese.2023.10028.]
31. قنادی, محمدامین, شهری, متین, & مرادی, امیررضا. (1401). پایش آلودگی هوا با استفاده از تصاویر ماهواره سنتینل-5 (مطالعه موردی: شهرهای بزرگ صنعتی ایران). فصلنامه علوم محیطی, 20(2), 81-98. doi: 10.52547/envs.2022.1026
32. محمدنژاد آروق، وحید. (1399). شناسایی اراضی شهری با استفاده از تصاویر ماهواره ای سنتینل 1 و 2 بر پایه سامانه گوگل ارث انجین (GEE). پژوهش های جغرافیای برنامه ریزی شهری، 8(3 )، 613-630. SID. https://sid.ir/paper/1063348/fa
33. Adebayo-Ojo, T. C., Wichmann, J., Arowosegbe, O. O., Probst-Hensch, N., Schindler, C., & Künzli, N. (2022). Short-Term Effects of PM10, NO2, SO2 and O3 on Cardio-Respiratory Mortality in Cape Town, South Africa, 2006-2015. International journal of environmental research and public health, 19(13), 8078.
34. Boersma, K. F., Eskes, H. J., & Brinksma, E. J. (2004). Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research: Atmospheres, 109(D4).
35. Cao, Z., Luan, K., Zhou, P., Shen, W., Wang, Z., Zhu, W., Qiu, Z., & Wang, J. (2023). Evaluation and Comparison of Multi-Satellite Aerosol Optical Depth Products over East Asia Ocean. Toxics, 11(10), 813.
36. Chadwick, G. L., Joiner, A. M. N., Ramesh, S., Mitchell, D. A., & Nayak, D. D. (2023). McrD binds asymmetrically to methyl-coenzyme M reductase improving active-site accessibility during assembly. Proceedings of the National Academy of Sciences of the United States of America, 120(25), e2302815120.
37. Chakrabortty, R., Pal, S. C., Ghosh, M., Arabameri, A., Saha, A., Roy, P., Pradhan, B., Mondal, A., Ngo, P. T. T., Chowdhuri, I., Yunus, A. P., Sahana, M., Malik, S., & Das, B. (2023). Weather indicators and improving air quality in association with COVID-19 pandemic in India. Soft computing, 27(6), 3367–3388.
38. Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., ... & McLinden, C. A. (2022). Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature, 601(7893), 380-387.
39. Culková, E., Lukáčová-Chomisteková, Z., Bellová, R., Rievaj, M., Švancarová-Laštincová, J., & Tomčík, P. (2023). An Interference-Free Voltammetric Method for the Detection of Sulfur Dioxide in Wine Based on a Boron-Doped Diamond Electrode and Reaction Electrochemistry. International journal of molecular sciences, 24(16), 12875.
40. Halder, B., Ahmadianfar, I., Heddam, S., Mussa, Z. H., Goliatt, L., Tan, M. L., Sa'adi, Z., Al-Khafaji, Z., Al-Ansari, N., Jawad, A. H., & Yaseen, Z. M. (2023). Machine learning-based country-level annual air pollutants exploration using Sentinel-5P and Google Earth Engine. Scientific reports, 13(1), 7968.
41. Han, L., Zhou, W., Pickett, S. T., Li, W., & Qian, Y. (2018). Multicontaminant air pollution in Chinese cities. Bulletin of the World Health Organization, 96(4), 233–242E.
42. Hassaan, M. A., Abdallah, S. M., Shalaby, E. A., & Ibrahim, A. A. (2023). Assessing vulnerability of densely populated areas to air pollution using Sentinel-5P imageries: a case study of the Nile Delta, Egypt. Scientific reports, 13(1), 17406.
43. Heue, K. P., Richter, A., Bruns, M., Burrows, J. P., Platt, U., Pundt, I., ... & Wagner, T. (2005). Validation of SCIAMACHY tropospheric NO 2-columns with AMAXDOAS measurements. Atmospheric Chemistry and Physics, 5(4), 1039-1051.
44. Hong, W. Y., Koh, D., & Yu, L. E. (2022). Development and Evaluation of Statistical Models Based on Machine Learning Techniques for Estimating Particulate Matter (PM2.5 and PM10) Concentrations. International journal of environmental research and public health, 19(13), 7728.
45. Hosseini, V., & Shahbazi, H. (2016). Urban air pollution in Iran. Iranian Studies, 49(6), 1029-1046.
46. Ialongo, I., Bun, R., Hakkarainen, J., Virta, H., & Oda, T. (2023). Satellites capture socioeconomic disruptions during the 2022 full-scale war in Ukraine. Scientific reports, 13(1), 14954.
47. Karim, I., & Rappenglück, B. (2023). Impact of Covid-19 lockdown regulations on PM2.5 and trace gases (NO2, SO2, CH4, HCHO, C2H2O2 and O3) over Lahore, Pakistan. Atmospheric environment (Oxford, England : 1994), 303, 119746.
48. Mandal, J., Samanta, S., Chanda, A., & Halder, S. (2021). Effects of COVID-19 pandemic on the air quality of three megacities in India. Atmospheric research, 259, 105659.
49. McDuffie, E. E., Sarofim, M. C., Raich, W., Jackson, M., Roman, H., Seltzer, K., Henderson, B. H., Shindell, D. T., Collins, M., Anderton, J., Barr, S., & Fann, N. (2023). The Social Cost of Ozone-Related Mortality Impacts From Methane Emissions. Earth's future, 11(9), 10.1029/2023ef003853.
50. Nguyen, T. P. M., Bui, T. H., Nguyen, M. K., Nguyen, T. H., Vu, V. T., & Pham, H. L. (2021). Impact of COVID-19 partial lockdown on PM 2.5, SO 2, NO 2, O 3, and trace elements in PM 2.5 in Hanoi, Vietnam. Environmental Science and Pollution Research, 1-11.
51. Niepsch, D., Clarke, L. J., Newton, J., Tzoulas, K., & Cavan, G. (2023). High spatial resolution assessment of air quality in urban centres using lichen carbon, nitrogen and sulfur contents and stable-isotope-ratio signatures. Environmental science and pollution research international, 30(20), 58731–58754.
52. Nouri, F., Taheri, M., Ziaddini, M., Najafian, J., Rabiei, K., Pourmoghadas, A., Shariful Islam, S. M., & Sarrafzadegan, N. (2023). Effects of sulfur dioxide and particulate matter pollution on hospital admissions for hypertensive cardiovascular disease: A time series analysis. Frontiers in physiology, 14, 1124967.
53. Rabiei-Dastjerdi, H., Mohammadi, S., Saber, M., Amini, S., & McArdle, G. (2022). Spatiotemporal analysis of NO2 production using TROPOMI time-series images and Google Earth Engine in a middle eastern country. Remote Sensing, 14(7), 1725.
54. Rahman M. M. (2023). Recommendations on the measurement techniques of atmospheric pollutants from in situ and satellite observations: a review. Arabian Journal of Geosciences, 16(5), 326.
55. Rudke, A. P., Martins, J. A., Hallak, R., Martins, L. D., de Almeida, D. S., Beal, A., Freitas, E. D., Andrade, M. F., Koutrakis, P., & Albuquerque, T. T. A. (2023). Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak. Remote sensing of environment, 289, 113514.
56. Singh, V., Singh, S., Biswal, A., Kesarkar, A. P., Mor, S., & Ravindra, K. (2020). Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environmental Pollution, 266, 115368.‌
57. Tao, M., Fiore, A. M., Jin, X., Schiferl, L. D., Commane, R., Judd, L. M., ... & Tian, Y. (2022). Investigating changes in ozone formation chemistry during summertime pollution events over the Northeastern United States. Environmental Science & Technology, 56(22), 15312.-15327.
58. Taha, R. A., Shalabi, A. S., Assem, M. M., & Soliman, K. A. (2023). DFT study of adsorbing SO2, NO2, and NH3 gases based on pristine and carbon-doped Al24N24 nanocages. Journal of molecular modeling, 29(5), 140.
59. Wang, C., Wang, T., & Wang, P. (2019). The spatial–temporal variation of tropospheric NO2 over China during 2005 to 2018. Atmosphere, 10(8), 444.
60. Zhang, Q., Yin, Z., Lu, X., Gong, J., Lei, Y., Cai, B., Cai, C., Chai, Q., Chen, H., Dai, H., Dong, Z., Geng, G., Guan, D., Hu, J., Huang, C., Kang, J., Li, T., Li, W., Lin, Y., Liu, J., … He, K. (2023). Synergetic roadmap of carbon neutrality and clean air for China. Environmental science and ecotechnology, 16, 100280.
61. Adebayo-Ojo, T. C., Wichmann, J., Arowosegbe, O. O., Probst-Hensch, N., Schindler, C., & Künzli, N. (2022). Short-Term Effects of PM10, NO2, SO2 and O3 on Cardio-Respiratory Mortality in Cape Town, South Africa, 2006-2015. International journal of environmental research and public health, 19(13), 8078. [DOI:10.3390/ijerph19138078.]
62. Boersma, K. F., Eskes, H. J., & Brinksma, E. J. (2004). Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research: Atmospheres, 109(D4).
63. Cao, Z., Luan, K., Zhou, P., Shen, W., Wang, Z., Zhu, W., Qiu, Z., & Wang, J. (2023). Evaluation and Comparison of Multi-Satellite Aerosol Optical Depth Products over East Asia Ocean. Toxics, 11(10), 813. [DOI:10.3390/toxics11100813.]
64. Chadwick, G. L., Joiner, A. M. N., Ramesh, S., Mitchell, D. A., & Nayak, D. D. (2023). McrD binds asymmetrically to methyl-coenzyme M reductase improving active-site accessibility during assembly. Proceedings of the National Academy of Sciences of the United States of America, 120(25), e2302815120. [DOI:10.1073/pnas.2302815120.]
65. Chakrabortty, R., Pal, S. C., Ghosh, M., Arabameri, A., Saha, A., Roy, P., Pradhan, B., Mondal, A., Ngo, P. T. T., Chowdhuri, I., Yunus, A. P., Sahana, M., Malik, S., & Das, B. (2023). Weather indicators and improving air quality in association with COVID-19 pandemic in India. Soft computing, 27(6), 3367–3388. [DOI:10.1007/s00500-021-06012-9 (Retraction published Soft comput. 2023 May 29;:1-2).]
66. Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., ... & McLinden, C. A. (2022). Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature, 601(7893), 380-387.
67. Culková, E., Lukáčová-Chomisteková, Z., Bellová, R., Rievaj, M., Švancarová-Laštincová, J., & Tomčík, P. (2023). An Interference-Free Voltammetric Method for the Detection of Sulfur Dioxide in Wine Based on a Boron-Doped Diamond Electrode and Reaction Electrochemistry. International journal of molecular sciences, 24(16), 12875. [DOI:10.3390/ijms241612875.]
68. Halder, B., Ahmadianfar, I., Heddam, S., Mussa, Z. H., Goliatt, L., Tan, M. L., Sa'adi, Z., Al-Khafaji, Z., Al-Ansari, N., Jawad, A. H., & Yaseen, Z. M. (2023). Machine learning-based country-level annual air pollutants exploration using Sentinel-5P and Google Earth Engine. Scientific reports, 13(1), 7968. [DOI:10.1038/s41598-023-34774-23]
69. Han, L., Zhou, W., Pickett, S. T., Li, W., & Qian, Y. (2018). Multicontaminant air pollution in Chinese cities. Bulletin of the World Health Organization, 96(4), 233–242E. [DOI:10.2471/BLT.17.195560]
70. Hassaan, M. A., Abdallah, S. M., Shalaby, E. A., & Ibrahim, A. A. (2023). Assessing vulnerability of densely populated areas to air pollution using Sentinel-5P imageries: a case study of the Nile Delta, Egypt. Scientific reports, 13(1), 17406. [DOI:10.1038/s41598-023-44186-36.]
71. Heue, K. P., Richter, A., Bruns, M., Burrows, J. P., Platt, U., Pundt, I., ... & Wagner, T. (2005). Validation of SCIAMACHY tropospheric NO 2-columns with AMAXDOAS measurements. Atmospheric Chemistry and Physics, 5(4), 1039-1051.
72. Hong, W. Y., Koh, D., & Yu, L. E. (2022). Development and Evaluation of Statistical Models Based on Machine Learning Techniques for Estimating Particulate Matter (PM2.5 and PM10) Concentrations. International journal of environmental research and public health, 19(13), 7728. [DOI:10.3390/ijerph19137728]
73. Hosseini, V., & Shahbazi, H. (2016). Urban air pollution in Iran. Iranian Studies, 49(6), 1029-1046.
74. Ialongo, I., Bun, R., Hakkarainen, J., Virta, H., & Oda, T. (2023). Satellites capture socioeconomic disruptions during the 2022 full-scale war in Ukraine. Scientific reports, 13(1), 14954. [DOI:10.1038/s41598-023-42118-w.]
75. Karim, I., & Rappenglück, B. (2023). Impact of Covid-19 lockdown regulations on PM2.5 and trace gases (NO2, SO2, CH4, HCHO, C2H2O2 and O3) over Lahore, Pakistan. Atmospheric environment (Oxford, England : 1994), 303, 119746. [DOI:10.1016/j.atmosenv.2023.119746.]
76. Mandal, J., Samanta, S., Chanda, A., & Halder, S. (2021). Effects of COVID-19 pandemic on the air quality of three megacities in India. Atmospheric research, 259, 105659. [DOI:10.1016/j.atmosres.2021.105659]
77. McDuffie, E. E., Sarofim, M. C., Raich, W., Jackson, M., Roman, H., Seltzer, K., Henderson, B. H., Shindell, D. T., Collins, M., Anderton, J., Barr, S., & Fann, N. (2023). The Social Cost of Ozone-Related Mortality Impacts From Methane Emissions. Earth's future, 11(9), 10.1029/2023ef003853. [DOI:10.1029/2023ef003853.]
78. Nguyen, T. P. M., Bui, T. H., Nguyen, M. K., Nguyen, T. H., Vu, V. T., & Pham, H. L. (2021). Impact of COVID-19 partial lockdown on PM 2.5, SO 2, NO 2, O 3, and trace elements in PM 2.5 in Hanoi, Vietnam. Environmental Science and Pollution Research, 1-11.
79. Niepsch, D., Clarke, L. J., Newton, J., Tzoulas, K., & Cavan, G. (2023). High spatial resolution assessment of air quality in urban centres using lichen carbon, nitrogen and sulfur contents and stable-isotope-ratio signatures. Environmental science and pollution research international, 30(20), 58731–58754. [DOI:10.1007/s11356-023-26652-8.]
80. Nouri, F., Taheri, M., Ziaddini, M., Najafian, J., Rabiei, K., Pourmoghadas, A., Shariful Islam, S. M., & Sarrafzadegan, N. (2023). Effects of sulfur dioxide and particulate matter pollution on hospital admissions for hypertensive cardiovascular disease: A time series analysis. Frontiers in physiology, 14, 1124967. [DOI:10.3389/fphys.2023.1124967.]
81. Rabiei-Dastjerdi, H., Mohammadi, S., Saber, M., Amini, S., & McArdle, G. (2022). Spatiotemporal analysis of NO2 production using TROPOMI time-series images and Google Earth Engine in a middle eastern country. Remote Sensing, 14(7), 1725.
82. Rahman M. M. (2023). Recommendations on the measurement techniques of atmospheric pollutants from in situ and satellite observations: a review. Arabian Journal of Geosciences, 16(5), 326. [DOI:10.1007/s12517-023-11410-118.]
83. Rudke, A. P., Martins, J. A., Hallak, R., Martins, L. D., de Almeida, D. S., Beal, A., Freitas, E. D., Andrade, M. F., Koutrakis, P., & Albuquerque, T. T. A. (2023). Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak. Remote sensing of environment, 289, 113514. [DOI:10.1016/j.rse.2023.113514.]
84. Singh, V., Singh, S., Biswal, A., Kesarkar, A. P., Mor, S., & Ravindra, K. (2020). Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environmental Pollution, 266, 115368.‌
85. Tao, M., Fiore, A. M., Jin, X., Schiferl, L. D., Commane, R., Judd, L. M., ... & Tian, Y. (2022). Investigating changes in ozone formation chemistry during summertime pollution events over the Northeastern United States. Environmental Science & Technology, 56(22), 15312.-15327.
86. Taha, R. A., Shalabi, A. S., Assem, M. M., & Soliman, K. A. (2023). DFT study of adsorbing SO2, NO2, and NH3 gases based on pristine and carbon-doped Al24N24 nanocages. Journal of molecular modeling, 29(5), 140. [DOI:10.1007/s00894-023-05547-y.]
87. Wang, C., Wang, T., & Wang, P. (2019). The spatial–temporal variation of tropospheric NO2 over China during 2005 to 2018. Atmosphere, 10(8), 444.
88. Zhang, Q., Yin, Z., Lu, X., Gong, J., Lei, Y., Cai, B., Cai, C., Chai, Q., Chen, H., Dai, H., Dong, Z., Geng, G., Guan, D., Hu, J., Huang, C., Kang, J., Li, T., Li, W., Lin, Y., Liu, J., … He, K. (2023). Synergetic roadmap of carbon neutrality and clean air for China. Environmental science and ecotechnology, 16, 100280. [DOI:10.1016/j.ese.2023.10028.]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به سامانه نشریات علمی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb