Volume 12, Issue 46 And 795 (9-2025)                   Journal of Spatial Analysis Environmental Hazards 2025, 12(46 And 795): 91-108 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Heidari S, Karimi M, Azizi G, Shamsipour A. An Analysis of the Dynamics of the Spatial Behavior of Drought in Iran. Journal of Spatial Analysis Environmental Hazards 2025; 12 (46 and 795) : 5
URL: http://jsaeh.khu.ac.ir/article-1-3475-en.html
1- Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran
2- Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran , Mostafakarimi.a@ut.ac.ir
Abstract:   (1273 Views)
Drought is one of the most significant natural hazards, characterized by complex spatiotemporal patterns. This study analyzes the structural and spatial characteristics of droughts in Iran across three temporal scales: annual, seasonal, and monthly. To achieve this, the intensity and extent of droughts were calculated using the RAI index and ERA5 monthly precipitation data over 42 years (1979–2021). Initially, the spatial distribution and directional trends of the drought centroid were examined, and its spatial variations over the years were analyzed. Additionally, the relationship between the location of the drought centroid and its extent was investigated. The results revealed that during the cold season, the drought centroid is primarily concentrated in central Iran, while in the warm season, it shifts toward the northwest, the Caspian Sea coast, and the southeastern regions of the country. The distribution pattern of droughts at all scales predominantly follows a northwest-to-southeast trajectory. Furthermore, shifts in the drought centroid toward the northeast, east, southeast, and south were observed to coincide with an increase in drought extent, whereas shifts toward the north, northwest, and west were associated with a reduction in drought extent. Overall, the findings of this study demonstrate a direct relationship between the location of the drought centroid and changes in drought extent, despite the fact that droughts in Iran lack consistent and predictable spatiotemporal patterns
 
Article number: 5
     
Type of Study: Research | Subject: Special
Received: 2025/01/6 | Accepted: 2025/09/3 | Published: 2025/09/9

References
1. Get persistent links for your reference list or bibliography. Copy and paste the list, we’ll match with our metadata and return the links. Members may also deposit reference lists here too. 29. Alizadeh-Choobari, O.; and M.S. Najafi. 2018. Extreme weather events in Iran under a changing climate. Climate dynamics, 50(1), 249-260. [DOI:10.1007/s00382-017-3602-4]
2. Bahrami, M.; S, Bazrkar, and A.R. Zarei. 2021. Spatiotemporal investigation of drought pattern in Iran via statistical analysis and GIS technique. Theoretical and Applied Climatology, 143, 1113-1128. [DOI:10.1007/s00704-020-03480-1]
3. Daneshmand, H.; and P. Mahmoudi. 2017. Estimation and assessment of temporal stability of periodicities of droughts in Iran. Water Resources Management, 31, .3413-3426. [DOI:10.1007/s11269-017-1676-8]
4. Darand, M.; and F. Pazhoh. 2022. Spatiotemporal changes in precipitation concentration over Iran during 1962-2019. Climatic Change, 173(3), 25. [DOI:10.1007/s10584-022-03421-z]
5. Diaz, V.; G.A. Corzo Perez, H.A. Van Lanen, and D. Solomatine. 2018, September. Intelligent drought tracking for its use in Machine Learning: implementation and first results. In HIC (Vol. 3, 601-606). DOI: 10.29007/klgg. [DOI:10.29007/klgg]
6. Diaz, V.; G. Corzo, H.A. Van Lanen, and D.P Solomatine. 2019. Spatiotemporal drought analysis at country scale through the application of the STAND toolbox. In Spatiotemporal Analysis of Extreme Hydrological Events (77-93). Elsevier. [DOI:10.1016/B978-0-12-811689-0.00004-5]
7. Emadodin, I.; T. Reinsch, and F. Taube, 2019. Drought and desertification in Iran. Hydrology, 6(3), 66. [DOI:10.3390/hydrology6030066]
8. Fallah Ghalhari, G.A.; A.A. Dadashi Roudbari, and M. Asadi. 2016. Identifying the spatial and temporal distribution characteristics of precipitation in Iran. Arabian Journal of Geosciences, 9, 1-12. [DOI:10.1007/s12517-016-2606-4]
9. Galton, F.; 1886. Regression towards mediocrity in hereditary stature. The Journal of the Anthropological Institute of Great Britain and Ireland, 15, 246-263. [DOI:10.2307/2841583]
10. Ghaedi, S.; and A. Shojaian, 2020. Spatial and temporal variability of precipitation concentration in Iran. Geographica Pannonica, 24(4). [DOI:10.5937/gp24-27361]
11. Ghajarnia, N.; M. Akbari, P. Saemian, M.R. Ehsani, S.M. Hosseini‐Moghari, A. Azizian, Z. Kalantari, A. Behrangi, M.J. Tourian, B. Klöve, and A.T. Haghighi, 2022. Evaluating the evolution of ECMWF precipitation products using observational data for Iran: From ERA40 to ERA5. Earth and Space Science, 9(10), p.e2022EA002352. [DOI:10.1029/2022EA002352]
12. Ghamghami, M.; and P. Irannejad, 2019. An analysis of droughts in Iran during 1988-2017. SN Applied Sciences, 1, 1-21. [DOI:10.1007/s42452-019-1258-x]
13. Hao, Z.; F. Hao, V.P. Singh, W. Ouyang, and H. Cheng, 2017. An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment. Environmental modelling & software, 91, 199-209. [DOI:10.1016/j.envsoft.2017.02.008]
14. Herrera‐Estrada, J.E.; Y. Satoh, and J. Sheffield, 2017. Spatiotemporal dynamics of global drought. Geophysical Research Letters, 44(5), 2254-2263. [DOI:10.1002/2016GL071768]
15. Izadi, N.; E.G. Karakani, A.R. Saadatabadi, A. Shamsipour, E. Fattahi, and M. Habibi, 2021. Evaluation of ERA5 precipitation accuracy based on various time scales over Iran during 2000-2018. Water, 13(18), 2538. [DOI:10.3390/w13182538]
16. Kallis, G.; 2008. Droughts. Annual review of environment and resources, 33(1), 85-118. [DOI:10.1146/annurev.environ.33.081307.123117]
17. Kazemzadeh, M.; Z. Noori, H. Alipour, S. Jamali, J. Akbari, A. Ghorbanian, and Z. Duan, 2022. Detecting drought events over Iran during 1983-2017 using satellite and ground-based precipitation observations. Atmospheric Research, 269, 106052. [DOI:10.1016/j.atmosres.2022.106052]
18. Kendall, M.G.; 1948. Rank correlation methods. 4th Edition Charles Griffin, London. 6 P
19. Lin, H.; J. Wang, F. Li, Y. Xie, C. Jiang, and L. Sun, 2020. Drought trends and the extreme drought frequency and characteristics under climate change based on SPI and HI in the upper and middle reaches of the Huai River Basin, China. Water, 12(4), 1100. [DOI:10.3390/w12041100]
20. Lloyd-Hughes, B.; 2012. A spatio-temporal structure-based approach to drought characterisation. International Journal of Climatology, 32(3), 406-418. [DOI:10.1002/joc.2280]
21. Luo, Y.; H. Yu, S. Liu, Y. Liang, and S. Liu, 2019. Spatial heterogeneity and coupling of economy and population gravity centres in the Hengduan mountains. Sustainability, 11(6), 1508. [DOI:10.3390/su11061508]
22. Mahajan, D.R; and B.M. Dodamani, 2015. Trend analysis of drought events over upper Krishna basin in Maharashtra. Aquatic Procedia, 4, 1250-1257. [DOI:10.1016/j.aqpro.2015.02.163]
23. Malayeri, A.K.; B. Saghafian, and T. Raziei, 2021. Performance evaluation of ERA5 precipitation estimates across Iran. Arabian Journal of Geosciences, 14, 1-18. [DOI:10.1007/s12517-021-09079-8]
24. Mallick, J.; S. Talukdar, M. Alsubih, R. Salam, M. Ahmed, N.B. Kahla, and M. Shamimuzzaman, 2021. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theoretical and Applied Climatology, 143, 823-841. [DOI:10.1007/s00704-020-03448-1]
25. Mann, H.B.; 1945. Nonparametric tests against trend. Econometrica: Journal of the econometric society,13, 245-259. [DOI:10.2307/1907187]
26. Mishra, A.K.; V.P. Singh, and V.R. Desai, 2009. Drought characterization: a probabilistic approach. Stochastic Environmental Research and Risk Assessment, 23, 41-55. DOI: 10.1007/s00477-007-0194-2 [DOI:10.1007/s00477-007-0194-2]
27. Modarres, R.; A. Sarhadi, and D.H. Burn, 2016. Changes of extreme drought and flood events in Iran. Global and Planetary Change, 144, 67-81. [DOI:10.1016/j.gloplacha.2016.07.008]
28. Modarres, R.; A. Sarhadi, and D.H. Burn, 2016. Changes of extreme drought and flood events in Iran. Global and Planetary Change, 144, 67-81. [DOI:10.1002/met.1899]
29. Patel, N.R.; P. Chopra, and V.K. Dadhwal, 2007. Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 14(4), 329-336. [DOI:10.1002/met.33]
30. Pour, S.H.; A.K.A. Wahab, and S. Shahid, 2020. Spatiotemporal changes in precipitation indicators related to bioclimate in Iran. Theoretical and Applied Climatology, 141, 99-115. [DOI:10.1007/s00704-020-03192-6]
31. Raziei, T.; B. Saghafian, A.A. Paulo, L.S. Pereira, and I. Bordi, 2009. Spatial patterns and temporal variability of drought in western Iran. Water resources management, 23, 439-455. [DOI:10.1007/s11269-008-9282-4]
32. Tabari, H.; and P. Willems, 2016. Daily precipitation extremes in Iran: decadal anomalies and possible drivers. JAWRA Journal of the American Water Resources Association, 52(2), 541-559. [DOI:10.1111/1752-1688.12403]
33. Tech, T.; 2011. Statistical analysis for monotonic trends.
34. Van Rooy, M.P., 1965. A rainfall anomally index independent of time and space, Notos, 14, 43-48.
35. Wang, S.Y.; , J.S. Liu and T.B. Ma, 2010. Dynamics and changes in spatial patterns of land use in Yellow River Basin, China. Land Use Policy, 27(2), 313-323. [DOI:10.1016/j.landusepol.2009.04.002]
36. Wilhite, D.A.; and M.H. Glantz, 1985. Understanding: the drought phenomenon: the role of definitions. Water International, 10(3), 111-120. [DOI:10.1080/02508068508686328]
37. World Meteorological Organization (WMO), 2006. Drought monitoring and early warning: concepts, progress and future challenges. progress and future challenges. WMO-No, WMO-No. 1006. WMO, Geneva, Switzerland Retrieved from http://www. droughtmanagement.info/literature/WMO_drought_monitoring_early_ warning_ 2006.pdf
38. Zhou, H.; Y. Liu, and Y. Liu, 2019. An approach to tracking meteorological drought migration. Water Resources Research, 55(4), 3266-3284. [DOI:10.1029/2018WR023311]
39. Zhu, J.; Y. Zou, D. Chen, W. Zhang, Y. Chen, and W. Cheng, 2024. Analyzing the Spatiotemporal Dynamics of Drought in Shaanxi Province. Atmosphere, 15(11), 1264. [DOI:10.3390/atmos15111264]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.