XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

shabani S, mohseni B, kornejady A, ahmadi A, faramarzi H, silakhori E. Spatial Prediction of Deforestation in Iran’s Hyrcanian Forests: Integrating Climatic, Topographic, and Anthropogenic Factors. Journal of Spatial Analysis Environmental Hazards 2025; 12 (1 and 45) : 4
URL: http://jsaeh.khu.ac.ir/article-1-3492-en.html
1- AREEO , s.shabani@areeo.ac.ir
2- AREEO
3- Faculty of Natural Resources and Marine Sciences, Noor, Mazandaran
4- gorgan university
Abstract:   (1514 Views)
Deforestation is one of the primary challenges and environmental threats facing forest ecosystems, including the Hyrcanian forests, and occurs under the influence of various natural and anthropogenic drivers. This study aimed to model the probability of deforestation occurrence within the Loveh forest management district located in northern Iran. The dataset comprised 104 documented deforestation points and 14 explanatory variables, derived through spatial analysis using GIS and environmental, topographic, and anthropogenic data. To assess the relationships among variables and predict the likelihood of deforestation, two statistical models were employed: logistic regression and the Generalized Additive Model (GAM). The results revealed that the GAM outperformed the logistic regression model, achieving a higher Kappa coefficient (0.84) and Area Under the Curve (AUC) value (0.956), and providing a more realistic spatial distribution of deforestation risk. The most influential variables included distance from roads, slope, wind effect, and elevation. Based on the GAM output, approximately 20% of the study area was categorized as high and very high risk. These findings underscore the pivotal role of access infrastructure, human pressure, and climatic factors in accelerating deforestation processes. The results of this study can serve as a scientific basis for prioritizing conservation interventions, reassessing road development policies, and enhancing spatial planning for sustainable forest management in northern Iran.
 
Article number: 4
     
Type of Study: Research | Subject: Special
Received: 2025/05/2 | Accepted: 2025/06/10 | Published: 2025/08/10

References
1. Abdullah, S. A.; and Nakagoshi, N. (2007). Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. Forest Ecology and Management, 241 (1-3), 39-48. [DOI:10.1016/j.foreco.2006.12.016]
3. Abman, R.; and Carney, C. (2020). Land rights, agricultural productivity, and deforestation. Food Policy, 94, 101841. [DOI:10.1016/j.foodpol.2020.101841]
5. Ahmadi, V. (2018). Using GIS and Artificial Neural Network for Deforestation Prediction. Remote Sensing, 2018030048, pp. 15. https://doi: 10.20944/preprints201803.0048.v1 [DOI:10.20944/preprints201803.0048.v1]
7. Bera, B.; Saha, S.; and Bhattacharjee, S. (2020). Forest cover dynamics (1998 to 2019) and prediction of deforestation probability using binary logistic regression (BLR) model of Silabati watershed, India. Trees, Forests and People, 100034. [DOI:10.1016/j.tfp.2020.100034]
9. 034
10. Chen, S.; Woodcock, C.; Dong, L.; Tarrio, K.; Mohammadi, D.; and Olofsson, P. (2024). Review of drivers of forest degradation and deforestation in Southeast Asia. Remote Sensing Applications: Society and Environment, 33, 101129, 11 pp. [DOI:10.1016/j.rsase.2023.101129]
12. Davison, C. W.; Rahbek, C.; and Morueta-Holme, N. (2021). Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Global Change Biology, 27, 5414-5429. https://doi:10.1111/gcb.15846 [DOI:10.1111/gcb.15846]
14. Dutt, S.; Batar, A. K.; Sulik, S.; and Kunz, M. (2024). Forest ecosystem on the edge: Mapping forest fragmentation susceptibility in Tuchola Forest, Poland. Ecological Indicators, 161: 111980. [DOI:10.1016/j.ecolind.2024.111980]
16. FAO (Food and Agriculture Organization). (2020). Global Forest Resources Assessment 2020, (Iran Report). Rome, 54 pp. https://openknowledge.fao.org/server/api/core/bitstreams/70aae432-4a3e-4d96-9083-f0800bd959af/content
17. Feng, Y.; Yang, Q.; Tong, X.; and Chen, L. (2018). Evaluating land ecological security and examining its relationships with driving factors using GIS and generalized additive model. Science of the Total Environment, 633, 1469-1479. https://doi: 10.1016/j.scitotenv.2018.03.272 [DOI:10.1016/j.scitotenv.2018.03.272]
19. Foley, J. A.; DeFries, R.; Asner, G. P.; Barford, C.C.; Bonan, G.; Carpenter, S. R.; Chapin, F. S.; Coe, M. T.; Daily, G. C.; Gibbs, H.; Helkowski, J. H.; Holloway, T.; Howard, E.; Kucharik, C. J.; Patz, J.; Prentice, I. C.; Ramankutty, N.; and Snyder, P. K. (2005). Global consequences of land use. Science. Science, 309 (5734), 570-574. https://doi: 10.1126/science.11117 [DOI:10.1126/science.1111772]
21. Hosonuma, N.; Herold, M.; Sy, V. D.; Fries, R. S. D.; Brockhaus, M.; Verchot, L.; Angelsen, A.; and Romijn, E. (2012). An assessment of deforestation and forest degradation drivers in developing countries. Environmental Research Letters, 7 (4), 044009. https://doi:10.1088/1748-9326/7/4/044009 [DOI:10.1088/1748-9326/7/4/044009]
23. Jellouli, O.; and Bernoussi, A.S. (2022). The impact of dynamic wind flow behavior on forest fire spread using cellular automata: Application to the watershed BOUKHALEF (Morocco). Ecological Modelling, 468, 109938. [DOI:10.1016/j.ecolmodel.2022.109938]
25. Kayet, N.; Pathak, K.; Kumar, S.; Singh, C.P.; Chowdary, V.M.; Chakrabarty, A.; Sinha, N.; Shaik, I.; Ghosh A. (2021). Deforestation susceptibility assessment and prediction in hilltop mining-affected forest region. Journal of Environmental Management, 112504. [DOI:10.1016/j.jenvman.2021.112504]
27. Knapp, M.; Strobl, M.; Venturo, A.; Seidl, M.; Jakubíkova, L.; Tajovský, K.; Kadlec, T.; and Gonzalez, E. (2022). Importance of grassy and forest non-crop habitat islands for overwintering of ground-dwelling arthropods in agricultural landscapes: A multi-taxa approach. Biological Conservation, 275, 109757. [DOI:10.1016/j.biocon.2022.109757]
29. Laurance, W.F.; Goosem, M.; and Laurance, S.G.W. (2009). Impacts of roads and linear clearings on tropical forests. Trends in Ecology and Evolution, 24 (12), 659-669. https://doi:10.1016/j.tree.2009.06.009 [DOI:10.1016/j.tree.2009.06.009]
31. Looze, B.E. (2009). Forest fragmentation patterns in Maine watersheds and prediction of visible crown diameter in recent undisturbed forest, MSc thesis, University of Wisconsin-Superior, 130 pp. https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=2772&context=etd
32. López, S. 2022. Deforestation, forest degradation, and land use dynamics in the Northeastern Ecuadorian Amazon. Applied Geography, 145, 102749. [DOI:10.1016/j.apgeog.2022.102749]
34. López-Bedoya, P. A.; Bohada-Murillo, M.; Ángel-Vallejo, M. C.; Audino, L. D.; Davis, A. L. V.; Gurr, G.; and Noriega, J. A. (2022). Primary forest loss and degradation reduces biodiversity and ecosystem functioning: A global meta-analysis using dung beetles as an indicator taxon. Journal of Applied Ecology, 59, 1572-1585. [DOI:10.1111/1365-2664.14167]
36. Mirakhorlou, Kh.; and Akhavan, R. (2017). Area changes of Hyrcanian Forests during 2004 to 2016. Nature Iran, 2 (3), 40-45. https://doi:10.22092/irn.2017.112967 (in Persian)
37. Netzel, P.; Tyminska, L.; Feleha, D. D.; Socha, J. (2024). New approach to assess forest fragmentation based on multiscale similarity index. Ecological Indicators, 158, 111530. https://doi: 10.1016/j.ecolind.2023.111530 [DOI:10.1016/j.ecolind.2023.111530]
39. Ojoatre, S.; Zhang, C.; Yesuf, G.; and Rufino, M.C. (2023). Mapping deforestation and recovery of tropical montane forests of East Africa. Frontiers in Environmental Science, 11, 1084764. 17 pp. https://www.10.3389/fenvs.2023.1084764 [DOI:10.3389/fenvs.2023.1084764]
41. Sahana, M.; Hong, H.; Sajjad, H.; Liu, J.; and Zhu, A.X. (2018). Assessing deforestation susceptibility to forest ecosystem in Rudraprayag district, India using fragmentation approach and frequency ratio model. Science of the Total Environment, 627, 1264-1275. [DOI:10.1016/j.scitotenv.2018.01.290]
43. Sahana, M.; Hong, H.; Sajjad, H.; Liu, J.; and Zhu, A.X. (2018). Assessing deforestation susceptibility to forest ecosystem in Rudraprayag district, India using fragmentation approach and frequency ratio model. Science of the Total Environment, 627, 1264-1275. [DOI:10.1016/j.scitotenv.2018.01.290]
45. Silva, A.C.O.; Fonseca, L.M.G.; Körting, T.S.; and Escada, M.I.S. (2020). A spatio-temporal Bayesian Network approach for deforestation prediction in an Amazon rainforest expansion frontier. Spatial Statistics, 35, 100393. [DOI:10.1016/j.spasta.2019.100393]
47. Silvério, D. V.; Brando, P. M.; Bustamante, M. M. C.; Putz, F. E.; Marra, D. M.; Levick, S. R.; and Trumbore, S. E. (2019). Fire, fragmentation, and windstorms: A recipe for tropical forest degradation. Journal of Ecology, 107 (2), 656-667. [DOI:10.1111/1365-2745.13076]
49. Tavares das Neves, P. B.; Blanco, C. J. C.; Duarte, A. A. A. M.; das Neves, F. B. S.; das Neves, L. B. S.; de Paula dos Santos, M. H. (2021). Amazon rainforest deforestation influenced by clandestine and regular roadway network. Land Use Policy, 108, 105510. [DOI:10.1016/j.landusepol.2021.105510]
51. Worku, A. (2023). Review on drivers of deforestation and associated socio-economic and ecological impacts. Advances in Agriculture. Food Science and Forestry, 11 (1), 1-12. https://creativecommons.org/licenses/by-nc-nd/4.0/
52. Yakhkeshi, A.; and Aftabtalab, N. (2008). Renewable resources and sustainable development. Department of Environment press, 176 pp. (in Persian)
53. Yamamoto, Y.; Shigetomi, Y.; Ishimura, Y. and Hattori, M. (2019). Forest change and agricultural productivity: Evidence from Indonesia. World Development, 114, 196-207. https://ideas.repec.org/a/eee/wdevel/v114y2019icp196-207.html [DOI:10.1016/j.worlddev.2018.10.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb