1. Abdullah, S. A.; and Nakagoshi, N. (2007). Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. Forest Ecology and Management, 241 (1-3), 39-48. [
DOI:10.1016/j.foreco.2006.12.016]
3. Abman, R.; and Carney, C. (2020). Land rights, agricultural productivity, and deforestation. Food Policy, 94, 101841. [
DOI:10.1016/j.foodpol.2020.101841]
5. Ahmadi, V. (2018). Using GIS and Artificial Neural Network for Deforestation Prediction. Remote Sensing, 2018030048, pp. 15. https://doi: 10.20944/preprints201803.0048.v1 [
DOI:10.20944/preprints201803.0048.v1]
7. Bera, B.; Saha, S.; and Bhattacharjee, S. (2020). Forest cover dynamics (1998 to 2019) and prediction of deforestation probability using binary logistic regression (BLR) model of Silabati watershed, India. Trees, Forests and People, 100034. [
DOI:10.1016/j.tfp.2020.100034]
9. 034
10. Chen, S.; Woodcock, C.; Dong, L.; Tarrio, K.; Mohammadi, D.; and Olofsson, P. (2024). Review of drivers of forest degradation and deforestation in Southeast Asia. Remote Sensing Applications: Society and Environment, 33, 101129, 11 pp. [
DOI:10.1016/j.rsase.2023.101129]
12. Davison, C. W.; Rahbek, C.; and Morueta-Holme, N. (2021). Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Global Change Biology, 27, 5414-5429. https://doi:10.1111/gcb.15846 [
DOI:10.1111/gcb.15846]
14. Dutt, S.; Batar, A. K.; Sulik, S.; and Kunz, M. (2024). Forest ecosystem on the edge: Mapping forest fragmentation susceptibility in Tuchola Forest, Poland. Ecological Indicators, 161: 111980. [
DOI:10.1016/j.ecolind.2024.111980]
16. FAO (Food and Agriculture Organization). (2020). Global Forest Resources Assessment 2020, (Iran Report). Rome, 54 pp. https://openknowledge.fao.org/server/api/core/bitstreams/70aae432-4a3e-4d96-9083-f0800bd959af/content
17. Feng, Y.; Yang, Q.; Tong, X.; and Chen, L. (2018). Evaluating land ecological security and examining its relationships with driving factors using GIS and generalized additive model. Science of the Total Environment, 633, 1469-1479. https://doi: 10.1016/j.scitotenv.2018.03.272 [
DOI:10.1016/j.scitotenv.2018.03.272]
19. Foley, J. A.; DeFries, R.; Asner, G. P.; Barford, C.C.; Bonan, G.; Carpenter, S. R.; Chapin, F. S.; Coe, M. T.; Daily, G. C.; Gibbs, H.; Helkowski, J. H.; Holloway, T.; Howard, E.; Kucharik, C. J.; Patz, J.; Prentice, I. C.; Ramankutty, N.; and Snyder, P. K. (2005). Global consequences of land use. Science. Science, 309 (5734), 570-574. https://doi: 10.1126/science.11117 [
DOI:10.1126/science.1111772]
21. Hosonuma, N.; Herold, M.; Sy, V. D.; Fries, R. S. D.; Brockhaus, M.; Verchot, L.; Angelsen, A.; and Romijn, E. (2012). An assessment of deforestation and forest degradation drivers in developing countries. Environmental Research Letters, 7 (4), 044009. https://doi:10.1088/1748-9326/7/4/044009 [
DOI:10.1088/1748-9326/7/4/044009]
23. Jellouli, O.; and Bernoussi, A.S. (2022). The impact of dynamic wind flow behavior on forest fire spread using cellular automata: Application to the watershed BOUKHALEF (Morocco). Ecological Modelling, 468, 109938. [
DOI:10.1016/j.ecolmodel.2022.109938]
25. Kayet, N.; Pathak, K.; Kumar, S.; Singh, C.P.; Chowdary, V.M.; Chakrabarty, A.; Sinha, N.; Shaik, I.; Ghosh A. (2021). Deforestation susceptibility assessment and prediction in hilltop mining-affected forest region. Journal of Environmental Management, 112504. [
DOI:10.1016/j.jenvman.2021.112504]
27. Knapp, M.; Strobl, M.; Venturo, A.; Seidl, M.; Jakubíkova, L.; Tajovský, K.; Kadlec, T.; and Gonzalez, E. (2022). Importance of grassy and forest non-crop habitat islands for overwintering of ground-dwelling arthropods in agricultural landscapes: A multi-taxa approach. Biological Conservation, 275, 109757. [
DOI:10.1016/j.biocon.2022.109757]
29. Laurance, W.F.; Goosem, M.; and Laurance, S.G.W. (2009). Impacts of roads and linear clearings on tropical forests. Trends in Ecology and Evolution, 24 (12), 659-669. https://doi:10.1016/j.tree.2009.06.009 [
DOI:10.1016/j.tree.2009.06.009]
31. Looze, B.E. (2009). Forest fragmentation patterns in Maine watersheds and prediction of visible crown diameter in recent undisturbed forest, MSc thesis, University of Wisconsin-Superior, 130 pp. https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=2772&context=etd
32. López, S. 2022. Deforestation, forest degradation, and land use dynamics in the Northeastern Ecuadorian Amazon. Applied Geography, 145, 102749. [
DOI:10.1016/j.apgeog.2022.102749]
34. López-Bedoya, P. A.; Bohada-Murillo, M.; Ángel-Vallejo, M. C.; Audino, L. D.; Davis, A. L. V.; Gurr, G.; and Noriega, J. A. (2022). Primary forest loss and degradation reduces biodiversity and ecosystem functioning: A global meta-analysis using dung beetles as an indicator taxon. Journal of Applied Ecology, 59, 1572-1585. [
DOI:10.1111/1365-2664.14167]
36. Mirakhorlou, Kh.; and Akhavan, R. (2017). Area changes of Hyrcanian Forests during 2004 to 2016. Nature Iran, 2 (3), 40-45. https://doi:10.22092/irn.2017.112967 (in Persian)
37. Netzel, P.; Tyminska, L.; Feleha, D. D.; Socha, J. (2024). New approach to assess forest fragmentation based on multiscale similarity index. Ecological Indicators, 158, 111530. https://doi: 10.1016/j.ecolind.2023.111530 [
DOI:10.1016/j.ecolind.2023.111530]
39. Ojoatre, S.; Zhang, C.; Yesuf, G.; and Rufino, M.C. (2023). Mapping deforestation and recovery of tropical montane forests of East Africa. Frontiers in Environmental Science, 11, 1084764. 17 pp. https://www.10.3389/fenvs.2023.1084764 [
DOI:10.3389/fenvs.2023.1084764]
41. Sahana, M.; Hong, H.; Sajjad, H.; Liu, J.; and Zhu, A.X. (2018). Assessing deforestation susceptibility to forest ecosystem in Rudraprayag district, India using fragmentation approach and frequency ratio model. Science of the Total Environment, 627, 1264-1275. [
DOI:10.1016/j.scitotenv.2018.01.290]
43. Sahana, M.; Hong, H.; Sajjad, H.; Liu, J.; and Zhu, A.X. (2018). Assessing deforestation susceptibility to forest ecosystem in Rudraprayag district, India using fragmentation approach and frequency ratio model. Science of the Total Environment, 627, 1264-1275. [
DOI:10.1016/j.scitotenv.2018.01.290]
45. Silva, A.C.O.; Fonseca, L.M.G.; Körting, T.S.; and Escada, M.I.S. (2020). A spatio-temporal Bayesian Network approach for deforestation prediction in an Amazon rainforest expansion frontier. Spatial Statistics, 35, 100393. [
DOI:10.1016/j.spasta.2019.100393]
47. Silvério, D. V.; Brando, P. M.; Bustamante, M. M. C.; Putz, F. E.; Marra, D. M.; Levick, S. R.; and Trumbore, S. E. (2019). Fire, fragmentation, and windstorms: A recipe for tropical forest degradation. Journal of Ecology, 107 (2), 656-667. [
DOI:10.1111/1365-2745.13076]
49. Tavares das Neves, P. B.; Blanco, C. J. C.; Duarte, A. A. A. M.; das Neves, F. B. S.; das Neves, L. B. S.; de Paula dos Santos, M. H. (2021). Amazon rainforest deforestation influenced by clandestine and regular roadway network. Land Use Policy, 108, 105510. [
DOI:10.1016/j.landusepol.2021.105510]
51. Worku, A. (2023). Review on drivers of deforestation and associated socio-economic and ecological impacts. Advances in Agriculture. Food Science and Forestry, 11 (1), 1-12. https://creativecommons.org/licenses/by-nc-nd/4.0/
52. Yakhkeshi, A.; and Aftabtalab, N. (2008). Renewable resources and sustainable development. Department of Environment press, 176 pp. (in Persian)
53. Yamamoto, Y.; Shigetomi, Y.; Ishimura, Y. and Hattori, M. (2019). Forest change and agricultural productivity: Evidence from Indonesia. World Development, 114, 196-207. https://ideas.repec.org/a/eee/wdevel/v114y2019icp196-207.html [
DOI:10.1016/j.worlddev.2018.10.001]