AU - aghazadeh, firuz AU - rostamzadeh, hashem AU - valizadeh kamran, khalil TI - Real-time detection of wildlife using NOAA/AVHRR data Study area :(Kayamaki Wildlife Refuge) PT - JOURNAL ARTICLE TA - jsaeh JN - jsaeh VO - 7 VI - 1 IP - 1 4099 - http://jsaeh.khu.ac.ir/article-1-2916-fa.html 4100 - http://jsaeh.khu.ac.ir/article-1-2916-fa.pdf SO - jsaeh 1 AB  - آتش سوزی جنگل در سال های اخیر توجه زیادی به تغییرات اقلیمی و اکوسیستم داشته است. سنجش از دور، یک روش سریع و ارزان برای تشخیص و نظارت بر آتش سوزی جنگل ها در مقیاس وسیع است. هدف از این پژوهش شناسایی آتش­سوزی جنگل و مراتع با استفاده از سنجنده­ NOAA/AVHRR در پناهگاه حیات وحش کیامکی می­باشد.جهت انجام تحقیق، ابتدا تاریخ آتش­سوزی­های رخ داده از محصولات MODIS استخراج گردید. سپس تصاویر سنجنده مورد نظر براساس تاریخ­ آتش­سوزی­های رخ داده تهیه شد. بعد از انجام پیش پردازش تصاویر، با استفاده از الگوریتم­های توسعه یافته، گیگلیو و IGBP اقدام به شناسایی آتش­سوزی گردید. نتایج الگوریتم­های شناسایی آتش­سوزی با محصولات MODIS مورد ارزیابی قرار گرفتند. نتایج نشان داد که شناسایی آتش­سوزی با استفاده از الگوریتم IGBP نسبت به الگوریتم­های توسعه یافته و گیگلیو بهتر است. بدین صورت که الگوریتم IGBP با تعداد آتش­سوزی شناسایی شده برابر با 6 پیکسل از 7 پیکسل آتش­سوزی شناسایی شده توسط محصولات MODIS، الگوریتم گیگلیو با تعداد آتش­سوزی شناسایی شده برابر با 5 پیکسل از 7 پیکسل آتش­سوزی شناسایی شده توسط محصولات MODIS و الگوریتم توسعه یافته تعداد آتش­سوزی شناسایی شده برابر با 3 پیکسل از 7 پیکسل آتش­سوزی شناسایی شده توسط محصولات MODIS را شناسایی کرد. همچنین الگوریتم IGBP با میزان خطای 14% و با تعداد آتش­سوزی شناسایی 86%، الگوریتم گیگلیو با میزان خطای 28% و تعداد آتش­سوزی شناسایی شده 72% و الگوریتم توسعه یافته با میزان خطای 57% و تعداد آتش­سوزی شناسایی شده 43% را نشان داد. CP - IRAN IN - - LG - eng PB - jsaeh PG - 1 PT - Applicable YR - 2020