دوره 11، شماره 2 - ( 6-1403 )                   جلد 11 شماره 2 صفحات 136-117 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirshafie A. Assessment of the measurement statistics of model accuracy and the appropriate use of them (Case study: Interpolation of Precipitation in Fars province). Journal of Spatial Analysis Environmental Hazards 2024; 11 (2) : 7
URL: http://jsaeh.khu.ac.ir/article-1-3401-fa.html
میرشفیعی علی اکبر، بازگیر سعید، عزیزی قاسم. ارزیابی آماره‎های اندازه گیری دقت مدل و استفاده صحیح از آنها (مطالعه موردی: درون‎یابی بارش در استان فارس). تحلیل فضایی مخاطرات محیطی. 1403; 11 (2) :117-136

URL: http://jsaeh.khu.ac.ir/article-1-3401-fa.html


1- دانشگاه تهران
2- دانشگاه تهران ، sbazgeer@ut.ac.ir
چکیده:   (1730 مشاهده)
در بسیاری از تحقیقات علمی، بدون توجه به برخی ملاحظات، از آماره‌های سنجش خطا برای انتخاب مدل یا روش در تحلیل فضایی مخاطرات محیطی استفاده می‌شود. این پژوهش به بررسی دقت روش‌های درون‌یابی بارش در استان فارس پرداخته و هدف آن ارزیابی عملکرد آماره‌های پرکاربرد اندازه‌گیری خطا و ارائه توصیه‌هایی برای استفاده صحیح از آن‌ها بوده است. در این مطالعه، بارش سال 1398 که یک سال پربارش بود، با استفاده از 161 ایستگاه هواشناسی (22 ایستگاه همدیدی و 139 ایستگاه بارانسنجی) و روش‌های وزنی عکس فاصله، کریجینگ، کوکریجینگ و تابع پایه شعاعی درون‌یابی شد. نتایج ارزیابی آماره MBE  نشان می‎دهد که به دلیل صفر شدن مجموع مقادیر مثبت و منفی، محققان ممکن است در انتخاب روش‌درون‌یابی دچار اشتباه شوند. این آماره تنها بیش‌برآوردی و کم‌برآوردی را نشان می‌دهد و نمی‌توان از آن برای ارزیابی دقت و انتخاب روش‌های درون‌یابی استفاده کرد. در مورد ضریب تبیین (r2نتایج نشان داد که به دلیل عدم تطابق دامنه تغییرات این ضریب (صفر تا 1) با مقادیر خطا (100 تا 400 میلیمتر برای درونیابی بارش استان فارس)، استفاده از آن برای ارزیابی دقت روش مناسب نیست. همچنین، نتایج  NRMSE نشان داد که در نمونههای با تعداد کم (n=3, NRMSE=0.35) در مقایسه با نمونههای با تعداد زیاد (n=20, NRMSE=0.097)، به طور قابل توجهی افزایش می‌یابد و استفاده از این آماره توصیه نمی‌شود. در نتیجه گیری کلی، استفاده از آمارههای MAE و RMSE برای ارزیابی خطای روشهای درونیابی به دلیل واقعیتر نشان دادن مقدار خطا پیشنهاد میشود.
شماره‌ی مقاله: 7
متن کامل [PDF 1388 kb]   (35 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/8/27 | پذیرش: 1403/6/24 | انتشار: 1403/6/24

فهرست منابع
1. اصغری‌مقدم، اصغر؛ وحید نورانی و عطاالله ندیری. 1388. پیش بینی زمانی و مکانی سطح آب‌های زیرزمینی در محدوده متروی شهر تبریز با استفاده از مدل کریجینگ عصبی، تحقیقات منابع آب ایران، 13: 14-24.
2. حسنی پاک، علی اصغر؛ محمد شرف الدین. 1390.تحلیل داده‌های اکتشافی، مؤسسه انتشارات دانشگاه تهران.
3. حسینی، سیده فاطمه؛ همتی، محمد؛ جعفری، مهتاب؛ استعلاجی، علیرضا. 1402. تحلیل و پهنه‎بندی خطر سیل‎خیزی و ارتباط آن با پوشش گیاهی در شهرستان قیروکارزین، تحلیل فضایی مخاطرات محیطی، 10(2): 77-96.
4. خسروی، علیرضا؛ اژدری مقدم، مهدی؛ هاشمی‎فرد، سید آرمان؛ نظری پور، حمید. 1401. مقایسه نتایج تصمیم‎گیری چند معیاره در پهنه‎بندی مناطق مستعد خطر سیلاب با شاخصهای سنجش از دور در حوضه آبریز رودخانه کهیر (بلوچستان جنوبی)، تحلیل فضایی مخاطرات محیطی، 9(4): 21-40.
5. زندکریمی، آرش؛ داود مختاری. 1397. ارزیابی دقت روش‌های مختلف درون‌یابی در تخمین مقادیر بارش جهت انتخاب بهینه‌ترین الگوریتم در استان کردستان، پژوهش‌های جغرافیایی طبیعی، دوره 5، شماره2: 338-323.
6. شمسی‌پور، علی اکبر. 1393. مدلسازی آب ‌وهوایی، انتشارات دانشگاه تهران.
7. عیوضی، معصومه؛ مشاعدی، ابوالفضل. 1390پایش و تحلیل مکانی خشکسالی هواشناسی در سطح استان گلستان با استفاده از روش‎های زمین‎آماری، مرتع و آبخیزداری، 64(1):65-78.
8. مرادی، اسحاق؛ افسانه شهبازی؛ کاظم نصرتی؛ غلامرضا زهتابیان. 1385. ارزیابی روش شبیه‌سازی تصادفی برای تولید داده‌های هواشناسی، پژوهش‌های جغرافیایی- شماره 62: 1-9.
9. ندیری، عطاالله؛ صدیقه شکور. 1393. ارزیابی انواع روش‌های درون‌یابی، جهت تخمین آلودگی نیترات در منابع آب زیرزمینی ، مجله هیدروژئومورفولوژی، شماره 1: 92-75.
10. Alimissis, A.; k. Philippopoulos, C. Gtzanis, and D. Deligiorgi. 2018. Spatial estimation of urban air pollution with the use of artificial neural network models. Atmospheric Environment. 191: 205-213.
11. Belkhiri L.; A. Tiri, and L. Mouni. 2020. Spatial distribution of the groundwater quality using kriging and Co-kriging interpolations. Groundwater for Sustainable Development. 11: 100-73.
12. Chai, T.; And R. Draxler. 2004. root mean square (RMSE) or mean absolute error (MAE) Arguments against avoiding RMSE in the literature. Geosci model Dev. 7: 1247-1250.
13. Davies, j.; M. Abdel-wahab, and D. Makay.1984. nating solar iradiation on horizontal Surfaces. solar Energy. 32: 307-309.
14. Ding, Q.; Y. Wang, and D. Zhuang. 2018. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Journal of Environmental Management. 212: 23-31.
15. García-Santos, G.; M. Scheiber, and J. Pilz. 2020. Spatial interpolation methods to predict airborne pesticide drift deposits on soils using knapsack sprayers. Chemosphere. 258: 127-231.
16. Falivene, O.; R. Cabrera, R. Tolosana-Delgado, and A. Saez. 2010. Interpolation algorithm ranking Using cross-validation and the role of asmoothing effect:A coal zone example Comput.Geosci, 36: 512-519.
17. Fekete, B.; C. Vörösmarty, J. Roads, and C. Willmott .2004. Uncertainties in precipitation and their impacts on runoff estimates. Journal of Clim. 17: 294–304
18. Fan, J.; and I. Gibels. 1996. Local Polynomial Modelling and Its Applications. Water Resources Bulletin. 87: 998-1004.
19. Hyndman, R.; and A. Koehler. 2005. Another look at measures of forecast accuracy . International Journal of Forecasting. 22: 679-688
20. Li, J.; H. Wan, and S. Shang. 2020. Comparison of interpolation methods for mapping layered soil particle-size fractions and texture in an arid oasis. Catena. 190: 104-1014.
21. Jacovides, C.; G. Papaioannou, and P. Kerkides. 1994. Micro and large-scale parameters evaluation of evaporation from a lake. Agricultural Water Management. 13: 263-27
22. Kazemi, S.; and S. Hosseini. 2011. Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea. Expert Systems with Applications. 38: 1632-1649.
23. Nekoamal, M.; and R. Mirabbasi. 2017. Assessment of interpolation methods in estimation of groundwater level (case study: sarkhon plain). Journal of hydrogeology, online publish. 2: 84-95.
24. Nash, J.; and E. Sutcliffe. 1970. River Flow forecasting through conceptual models, part 1-A discussion of principles. Journal of Hydrology, 10: 282-290.
25. Salah, H.; 2009. Geostatistical analysis of groundwater levels in the south Al Jabal Al Akhdar area using GIS. GIS Ostrava. 25: 1-10.
26. Willmott, C.; and K. Matsuura. 2005. advantages of the mean Absolute Error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research. 30: 79-82.
27. Xin, Y.; and G, Xiao 2009. Linear regression analysis: theory and computing. world Scientific Publishin. 348.
28. Yuval-Levy, I.; and D, Broday. 2017. Improving modeled air pollution concentration maps by residual interpolation. Science of The Total Environment. 598: 780-788.
29. Alimissis, A.; k. Philippopoulos, C. Gtzanis, and D. Deligiorgi. 2018. Spatial estimation of urban air pollution with the use of artificial neural network models. Atmospheric Environment. 191: 205-213.
30. Asghari Moghadam, A.; V. Norani, and A. O. Nadiri. 2009. Forecasting Spatiotemporal Water Levels by Neural Kriging Method in Tabriz City Underground Area. Iran Water Resources Research. 191: 205-213. (In Persian)
31. Belkhiri L.; A. Tiri, and L. Mouni. 2020. Spatial distribution of the groundwater quality using kriging and Co-kriging interpolations. Groundwater for Sustainable Development. 11: 100-73.
32. Chai, T.; And R. Draxler. 2004. root mean square (RMSE) or mean absolute error (MAE) Arguments against avoiding RMSE in the literature. Geosci model Dev. 7: 1247-1250.
33. Davies, j.; M. Abdel-wahab, and D. Makay.1984. nating solar iradiation on horizontal Surfaces. solar Energy. 32: 307-309.
34. Ding, Q.; Y. Wang, and D. Zhuang. 2018. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Journal of Environmental Management. 212: 23-31.
35. García-Santos, G.; M. Scheiber, and J. Pilz. 2020. Spatial interpolation methods to predict airborne pesticide drift deposits on soils using knapsack sprayers. Chemosphere. 258: 127-231.
36. Falivene, O.; R. Cabrera, R. Tolosana-Delgado, and A. Saez. 2010. Interpolation algorithm ranking Using cross-validation and the role of a smoothing effect:A coal zone example Comput.Geosci, 36: 512-519.
37. Fekete, B.; C. Vörösmarty, J. Roads, and C. Willmott .2004. Uncertainties in precipitation and their impacts on runoff estimates. Journal of Clim. 17: 294–304
38. Fan, J.; and I. Gibels. 1996. Local Polynomial Modelling and Its Applications. Water Resources Bulletin. 87: 998-1004.
39. Hasani Pak, A. A. and M. Sharafaldin. 2011. Expolratory Data Analisis. University of Tehran. (In Persian)
40. Hyndman, R.; and A. Koehler. 2005. Another look at measures of forecast accuracy. International Journal of Forecasting. 22: 679-688
41. Li, J.; H. Wan, and S. Shang. 2020. Comparison of interpolation methods for mapping layered soil particle-size fractions and texture in an arid oasis. Catena. 190: 104-1014.
42. Jacovides, C.; G. Papaioannou, and P. Kerkides. 1994. Micro and large-scale parameters evaluation of evaporation from a lake. Agricultural Water Management. 13: 263-27
43. Kazemi, S.; and S. Hosseini. 2011. Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea. Expert Systems with Applications. 38: 1632-1649.
44. Moradi, I. A. ; Shahbazi; K. Nosrati and Gh. Zehtabian. 2006. Assessment of Random Simulation Method for Producing Meteorological Data. Physical Geography Research Quarterly. 62: 1-9. (In Persian)
45. Nadiri, A. ; S. Shakoor; A. Asghari Moghadam And M. Vadiati. Investigation of Groundwater Nitrate Pollution with Different Interpolation Methods (Case Study: East Azarbayjan, Bilverdy Plain). 2015. Hydrogeomorphology. 1: 75-92. (In Persian)
46. Nekoamal, M.; and R. Mirabbasi. 2017. Assessment of interpolation methods in estimation of groundwater level (case study: Sarkhon plain). Journal of hydrogeology, online publishing. 2: 84-95.
47. Nash, J.; and E. Sutcliffe. 1970. River Flow forecasting through conceptual models, part 1-A discussion of principles. Journal of Hydrology, 10: 282-290.
48. Salah, H.; 2009. Geostatistical analysis of groundwater levels in the south Al Jabal Al Akhdar area using GIS. GIS Ostrava. 25: 1-10.
49. Shamsipour, A. A. 2014. Climate Modeling. University of Tehran. (In Persian)
50. Willmott, C.; and K. Matsuura. 2005. advantages of the mean Absolute Error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research. 30: 79-82.
51. Xin, Y.; and G, Xiao 2009. Linear regression analysis: theory and computing. world Scientific Publishing. 348.
52. Yuval-Levy, I.; and D, Broday. 2017. Improving modeled air pollution concentration maps by residual interpolation. Science of The Total Environment. 598: 780-788.
53. Zandkarimi, A. and D. Mokhtari. 2018. Accuracy of Various Interpolation Methods in Estimating Rainfall Values to Select the Most Optimal Interpolation Algorithm (Case Study: Kurdistan province. Physical Geography Research Quarterly. 5: 323-338. (In Persian)

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به سامانه نشریات علمی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb